Sodium adsorption ratio (SAR) is considered as a measure of the water suitability for irrigation usage. This study examines the effect of the physicochemical parameters on water quality and SAR, which included Calcium(Ca+2), Magnesium(Mg+2), Sodium (Na+), Potassium (K), Chloride (Cl-), Sulfate(SO4-2), Carbonate (CO3-2), Bicarbonate (HCO3-), Nitrate (NO3-), Total Hardness (TH), Total Dissolved Salts (TDS), Electrical Conductivity (EC), degree of reaction (DR), Boron (B) and the monthly and annually flow discharge (Q). The water samples were collected from three stations across the Tigris River in Iraq, which flows through Samarra city (upstream), Baghdad city (central) and the end of Kut city (downstream) for the periods of 2016-2018. Results showed that the water quality of the Tigris River water is within the world health organization (WHO) specifications for drinking water except for Sulfate concentration. An artificial neural network (ANN) was used to develop the model for the three locations to predict SAR. The sum of the squared error function and the coefficient of determination (R2) were used to evaluate the amount of error in predicting values of SAR and performance evaluation of the model. The results showed that the highest value of the coefficient of determination was 0.992, 0.986, and 0.955 for Samarra, Baghdad, and Kut, respectively and the ANN analysis indicated that the prediction of SAR was effected by Sodium for three stations. Thus, the ANN model has been found to provide SAR prediction tool that can be used effectively to describe the suitability of river water quality for irrigation purposes.
The brain's magnetic resonance imaging (MRI) is tasked with finding the pixels or voxels that establish where the brain is in a medical image The Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents. Next, the lines are separated into characters. In the Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents case of fonts with a fixed MRI width, the gaps are analyzed and split. Otherwise, a limited region above the baseline is analyzed, separated, and classified. The words with the lowest recognition score are split into further characters x until the result improves. If this does not improve the recognition s
... Show MoreThe present study is considered the first on this sector of the Tigris River after 2003. It is designed for two aims, the first is to demonstrate the seasonal variations in physicochemical parameters of Tharthar-Tigris Canal and Tigris River; the second is to explain the possible effects of canal on some environmental properties in the Tigris River. Water samples were being collected monthly. Six sampling sites were selected, two on Tharthar Canal and four along the Tigris River, one before the confluence as a control site and the others downstream the confluence with the canal. For a period from January to December 2020, nineteen physicochemical parameters were investigated including air and water temperature, turbidity, electrical cond
... Show MoreA total of 60 species of aquatic oligochaetes were identified in different sites within Tigris-Euphrates basin / Iraq, including River Tigris, River Euphrates, Southern marshes ( Al-Haweiza , Al-Hammar and Al-Chebaiesh ) , Shutt Al-Germa, and Shatt Al-Arab. In River Euphrates 39 species were identified, 40 species from River Tigris and 32 species from Shatt-Al-Arab and southern marshes.The identified species were classified as four species of Family Aeolosomatidae, 54 species of Naididae ( 31 Naidinae , 8 Pristininae and 15 Tubificid worms), one species of each of Lumbriculidae ( Lumbriculus variegates ) and Lumbricidae ( Eiseiella tetraedra). Among Aeolosomatidae , Aelosoma aquaternarium, A. Liedyi, A. variegatum and A. hemprichi
... Show MoreComputer systems and networks are being used in almost every aspect of our daily life, the security threats to computers and networks have increased significantly. Usually, password-based user authentication is used to authenticate the legitimate user. However, this method has many gaps such as password sharing, brute force attack, dictionary attack and guessing. Keystroke dynamics is one of the famous and inexpensive behavioral biometric technologies, which authenticate a user based on the analysis of his/her typing rhythm. In this way, intrusion becomes more difficult because the password as well as the typing speed must match with the correct keystroke patterns. This thesis considers static keystroke dynamics as a transparent layer of t
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreAl-Chibayish Marsh (CM) is considered as the major part of Central Marshes area of this marsh is 1050 Km². The water quality of these marshes is suffering from salt accumulation due to intensive dam construction, limited supply of water from sources, climate change impacts, and the absence of outlet flow from these marshes, specifically at low flow periods. So, the current research aims to assess and improve these marshes' hydraulic behavior and water quality and define the best location for outlet drains. Field measurements and laboratory tests were conducted for two periods (November 2020 and February 2021) to define the (TDS) concentrations at nine different locations. Samples were also examined for water's phy
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreBenthic algae of Tigris river and one of its northern tributary the lower Zab were study at monthly intervals during Nov. 2001-Oct. 2002. Four sites were selected, a total of 115 species of algae were identified during this study, diatoms was the dominating group (86 species) followed by Chlorophyta (18 species), Cyanophyta (7species), Euglenophyta (2 species) and one species for each of Pyrrophyta and Chryzophyta. Pennate diatoms formed the major density within the identified algae and distributed among all stations especially the species Achnanthes minutissima, Navicula gracilis and Nitzschia palea, the diatoms bloomed in spring and autumn seasons. Bio-diversity and density of benthic algae in Tigris river was affected negatively by the e
... Show MorePredicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be
... Show More