Preferred Language
Articles
/
WRaJGIcBVTCNdQwCbjYP
Water Quality Assessment and Sodium Adsorption Ratio Prediction of Tigris River Using Artificial Neural Network
...Show More Authors

Sodium adsorption ratio (SAR) is considered as a measure of the water suitability for irrigation usage. This study examines the effect of the physicochemical parameters on water quality and SAR, which included Calcium(Ca+2), Magnesium(Mg+2), Sodium (Na+), Potassium (K), Chloride (Cl-), Sulfate(SO4-2), Carbonate (CO3-2), Bicarbonate (HCO3-), Nitrate (NO3-), Total Hardness (TH), Total Dissolved Salts (TDS), Electrical Conductivity (EC), degree of reaction (DR), Boron (B) and the monthly and annually flow discharge (Q). The water samples were collected from three stations across the Tigris River in Iraq, which flows through Samarra city (upstream), Baghdad city (central) and the end of Kut city (downstream) for the periods of 2016-2018. Results showed that the water quality of the Tigris River water is within the world health organization (WHO) specifications for drinking water except for Sulfate concentration. An artificial neural network (ANN) was used to develop the model for the three locations to predict SAR. The sum of the squared error function and the coefficient of determination (R2) were used to evaluate the amount of error in predicting values of SAR and performance evaluation of the model. The results showed that the highest value of the coefficient of determination was 0.992, 0.986, and 0.955 for Samarra, Baghdad, and Kut, respectively and the ANN analysis indicated that the prediction of SAR was effected by Sodium for three stations. Thus, the ANN model has been found to provide SAR prediction tool that can be used effectively to describe the suitability of river water quality for irrigation purposes.

Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Checklist of Aquatic Oligochaetes Species in Tigris–Euphrates River basin
...Show More Authors

A total of 60 species of aquatic oligochaetes were identified in different sites within Tigris-Euphrates basin / Iraq, including River Tigris, River Euphrates, Southern marshes ( Al-Haweiza , Al-Hammar and Al-Chebaiesh ) , Shutt Al-Germa, and Shatt Al-Arab. In River Euphrates 39 species were identified, 40 species from River Tigris and 32 species from Shatt-Al-Arab and southern marshes.The identified species were classified as four species of Family Aeolosomatidae, 54 species of Naididae ( 31 Naidinae , 8 Pristininae and 15 Tubificid worms), one species of each of Lumbriculidae ( Lumbriculus variegates ) and Lumbricidae ( Eiseiella tetraedra). Among Aeolosomatidae , Aelosoma aquaternarium, A. Liedyi, A. variegatum and A. hemprichi

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Nov 01 2018
Journal Name
International Journal Of Science And Research (ij
Mathematical Models for Predicting of Organic and Inorganic Pollutants in Diyala River Using AnalysisNeural Network
...Show More Authors

Diyala river is the most important tributaries in Iraq, this river suffering from pollution, therefore, this research aimed to predict organic pollutants that represented by biological oxygen demand BOD, and inorganic pollutants that represented by total dissolved solids TDS for Diyala river in Iraq, the data used in this research were collected for the period from 2011-2016 for the last station in the river known as D17, before the river meeting Tigris river in Baghdad city. Analysis Neural Network ANN was used in order to find the mathematical models, the parameters used to predict BOD were seven parameters EC, Alk, Cl, K, TH, NO3, DO, after removing the less importance parameters. While the parameters that used to predict TDS were fourte

... Show More
Publication Date
Wed Sep 01 2021
Journal Name
Journal Of Engineering
Spike neural network as a controller in SDN network
...Show More Authors

The paper proposes a methodology for predicting packet flow at the data plane in smart SDN based on the intelligent controller of spike neural networks(SNN). This methodology is applied to predict the subsequent step of the packet flow, consequently reducing the overcrowding that might happen. The centralized controller acts as a reactive controller for managing the clustering head process in the Software Defined Network data layer in the proposed model. The simulation results show the capability of Spike Neural Network controller in SDN control layer to improve the (QoS) in the whole network in terms of minimizing the packet loss ratio and increased the buffer utilization ratio.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Retrieving Encrypted Images Using Convolution Neural Network and Fully Homomorphic Encryption
...Show More Authors

A content-based image retrieval (CBIR) is a technique used to retrieve images from an image database. However, the CBIR process suffers from less accuracy to retrieve images from an extensive image database and ensure the privacy of images. This paper aims to address the issues of accuracy utilizing deep learning techniques as the CNN method. Also, it provides the necessary privacy for images using fully homomorphic encryption methods by Cheon, Kim, Kim, and Song (CKKS). To achieve these aims, a system has been proposed, namely RCNN_CKKS, that includes two parts. The first part (offline processing) extracts automated high-level features based on a flatting layer in a convolutional neural network (CNN) and then stores these features in a

... Show More
View Publication Preview PDF
Scopus (16)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
Benthic Algae in Lower Zab Tributary and Tigris river
...Show More Authors

Benthic algae of Tigris river and one of its northern tributary the lower Zab were study at monthly intervals during Nov. 2001-Oct. 2002. Four sites were selected, a total of 115 species of algae were identified during this study, diatoms was the dominating group (86 species) followed by Chlorophyta (18 species), Cyanophyta (7species), Euglenophyta (2 species) and one species for each of Pyrrophyta and Chryzophyta. Pennate diatoms formed the major density within the identified algae and distributed among all stations especially the species Achnanthes minutissima, Navicula gracilis and Nitzschia palea, the diatoms bloomed in spring and autumn seasons. Bio-diversity and density of benthic algae in Tigris river was affected negatively by the e

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Ssrn Electronic Journal
The Prospective of Artificial Neural Network (ANN’s) Model Application to Ameliorate Management of Post Disaster Engineering Projects
...Show More Authors

Currently and under the COVID-19 which is considered as a kind of disaster or even any other natural or manmade disasters, this study was confirmed to be important especially when the society is proceeding to recover and reduce the risks of as possible as injuries. These disasters are leading somehow to paralyze the activities of society as what happened in the period of COVID-19, therefore, more efforts were to be focused for the management of disasters in different ways to reduce their risks such as working from distance or planning solutions digitally and send them to the source of control and hence how most countries overcame this stage of disaster (COVID-19) and collapse. Artificial intelligence should be used when there is no practica

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
The effect of the activation functions on the classification accuracy of satellite image by artificial neural network
...Show More Authors

View Publication
Scopus (21)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Tue Dec 31 2024
Journal Name
Journal Of Soft Computing And Computer Applications
Enhancing Image Classification Using a Convolutional Neural Network Model
...Show More Authors

In recent years, with the rapid development of the current classification system in digital content identification, automatic classification of images has become the most challenging task in the field of computer vision. As can be seen, vision is quite challenging for a system to automatically understand and analyze images, as compared to the vision of humans. Some research papers have been done to address the issue in the low-level current classification system, but the output was restricted only to basic image features. However, similarly, the approaches fail to accurately classify images. For the results expected in this field, such as computer vision, this study proposes a deep learning approach that utilizes a deep learning algorithm.

... Show More
View Publication
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Proceedings Of International Conference On Computing And Communication Networks
Speech Age Estimation Using a Ranking Convolutional Neural Network
...Show More Authors

View Publication
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Engineering
Improvement of the Hydrodynamic Behavior and Water Quality Assessment of Al-Chibayish Marshes, Iraq
...Show More Authors

Al-Chibayish Marsh (CM)  is considered as the major part of Central Marshes area of this marsh is 1050 Km². The water quality of these marshes is suffering from salt accumulation due to intensive dam construction, limited supply of water from sources,  climate change impacts, and the absence of outlet flow from these marshes, specifically at low flow periods. So, the current research aims to assess and improve these marshes' hydraulic behavior and water quality and define the best location for outlet drains.  Field measurements and laboratory tests were conducted for two periods (November 2020 and February 2021) to define the (TDS) concentrations at nine different locations. Samples were also examined for water's phy

... Show More
View Publication Preview PDF
Crossref (2)
Crossref