Background and Aim: Canine parvovirus 2 (CPV-2) is a highly contagious virus that infects wild and domestic canines. Despite the use of a routine vaccination protocol, it is endemic in Iraq. The genetic drift of CPV-2 is a major issue worldwide because it abrogates virus control. In Iraq, there is a knowledge gap regarding the genetic sequences of asymptomatic and symptomatic CPV-2 cases. Therefore, this study aimed to perform a genetic analysis of viral capsid protein 1 (VP1) and viral capsid protein 2 (VP2), two major capsid-encoding genes, to demonstrate the possible role of certain mutations in triggering infection. Materials and Methods: Symptomatic and asymptomatic cases (n = 100/each) were tested by a polymerase chain reaction targeting VP1 and VP2 genes. Results: The analysis revealed numerous synonymous and nonsynonymous mutations in VP1 and VP2 and in the intergenic sequence. Conclusion: The study identified significant genetic mutations in VP1, VP2, and the intergenic regions of CPV-2 in symptomatic and asymptomatic cases in Iraq. These mutations may contribute to the virus’s ability to evade control measures such as vaccination. These findings indicate that CPV-2 polymorphisms can influence the clinical state of the disease and/or trigger infection. Understanding these genetic variations provides critical insights into CPV-2 pathogenesis and could inform improved vaccination strategies to mitigate the virus’s impact in endemic regions. Keywords: canine parvovirus-2, capsid encoded genes, mutations.
Today, the world is living in a time of epidemic diseases that spread unnaturally and infect and kill millions of people worldwide. The COVID-19 virus, which is one of the most well-known epidemic diseases currently spreading, has killed more than six million people as of May 2022. The World Health Organization (WHO) declared the 2019 coronavirus disease (COVID-19) after an outbreak of SARS-CoV-2 infection. COVID-19 is a severe and potentially fatal respiratory disease caused by the SARS-CoV-2 virus, which was first noticed at the end of 2019 in Wuhan city. Artificial intelligence plays a meaningful role in analyzing medical images and giving accurate results that serve healthcare workers, especially X-ray images, which are co
... Show More In this paper, we introduce a new type of functions in bitopological spaces, namely, (1,2)*-proper functions. Also, we study the basic properties and characterizations of these functions . One of the most important of equivalent definitions to the (1,2)*-proper functions is given by using (1,2)*-cluster points of filters . Moreover we define and study (1,2)*-perfect functions and (1,2)*-compact functions in bitopological spaces and we study the relation between (1,2)*-proper functions and each of (1,2)*-closed functions , (1,2)*-perfect functions and (1,2)*-compact functions and we give an example when the converse may not be true .