Today, the world is living in a time of epidemic diseases that spread unnaturally and infect and kill millions of people worldwide. The COVID-19 virus, which is one of the most well-known epidemic diseases currently spreading, has killed more than six million people as of May 2022. The World Health Organization (WHO) declared the 2019 coronavirus disease (COVID-19) after an outbreak of SARS-CoV-2 infection. COVID-19 is a severe and potentially fatal respiratory disease caused by the SARS-CoV-2 virus, which was first noticed at the end of 2019 in Wuhan city. Artificial intelligence plays a meaningful role in analyzing medical images and giving accurate results that serve healthcare workers, especially X-ray images, which are complex images in their interpretation. In this article, two deep convolutional neural network (DCNN) classifiers, such as Inception-v2 and VGG-16, are utilized to detect COVID-19 from a set of chest X-ray images. The dataset for this article was collected from the Kaggle platform (COVID-19 Radiography Database) and consists of images of positive and healthy people. This article concludes that the most suitable performance is the Inception-v2 classifier, which has achieved an accuracy of 97% in comparison to the VGG-16 classifier, which has achieved an accuracy of 93%.
With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreCOVID-19 (Coronavirus disease-2019), commonly called Coronavirus or CoV, is a dangerous disease caused by the SARS-CoV-2 virus. It is one of the most widespread zoonotic diseases around the world, which started from one of the wet markets in Wuhan city. Its symptoms are similar to those of the common flu, including cough, fever, muscle pain, shortness of breath, and fatigue. This article suggests implementing machine learning techniques (Random Forest, Logistic Regression, Naïve Bayes, Support Vector Machine) by Python to classify a series of chest X-ray images that include viral pneumonia, COVID-19, and healthy (Not infected) cases in humans. The study includes more than 1400 images that are collected from the Kaggle platform. The expe
... Show MoreCoronavirus is considered the first virus to sweep the world in the twenty-first century, it appeared by the end of 2019. It started in the Chinese city of Wuhan and began to spread in different regions around the world too quickly and uncontrollable due to the lack of medical examinations and their inefficiency. So, the process of detecting the disease needs an accurate and quickly detection techniques and tools. The X-Ray images are good and quick in diagnosing the disease, but an automatic and accurate diagnosis is needed. Therefore, this paper presents an automated methodology based on deep learning in diagnosing COVID-19. In this paper, the proposed system is using a convolutional neural network, which is considered one o
... Show MoreMedical images play a crucial role in the classification of various diseases and conditions. One of the imaging modalities is X-rays which provide valuable visual information that helps in the identification and characterization of various medical conditions. Chest radiograph (CXR) images have long been used to examine and monitor numerous lung disorders, such as tuberculosis, pneumonia, atelectasis, and hernia. COVID-19 detection can be accomplished using CXR images as well. COVID-19, a virus that causes infections in the lungs and the airways of the upper respiratory tract, was first discovered in 2019 in Wuhan Province, China, and has since been thought to cause substantial airway damage, badly impacting the lungs of affected persons.
... Show MoreCorona Virus Disease-2019 (COVID-19) is a novel virus belongs to the corona virus's family. It spreads very quickly and causes many deaths around the world. The early diagnosis of the disease can help in providing the proper therapy and saving the humans' life. However, it founded that the diagnosis of chest radiography can give an indicator of coronavirus. Thus, a Corner-based Weber Local Descriptor (CWLD) for COVID-19 diagnostics based on chest X-Ray image analysis is presented in this article. The histogram of Weber differential excitation and gradient orientation of the local regions surrounding points of interest are proposed to represent the patterns of the chest X-Ray image. Support Vector Machine (SVM) and Deep Belief Network (DBN)
... Show More<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121
... Show MoreEstimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes
... Show More