Biomarkers to detect Alzheimer’s disease (AD) would enable patients to gain access to appropriate services and may facilitate the development of new therapies. Given the large numbers of people affected by AD, there is a need for a low-cost, easy to use method to detect AD patients. Potentially, the electroencephalogram (EEG) can play a valuable role in this, but at present no single EEG biomarker is robust enough for use in practice. This study aims to provide a methodological framework for the development of robust EEG biomarkers to detect AD with a clinically acceptable performance by exploiting the combined strengths of key biomarkers. A large number of existing and novel EEG biomarkers associated with slowing of EEG, reduction in EEG complexity and decrease in EEG connectivity were investigated. Support vector machine and linear discriminate analysis methods were used to find the best combination of the EEG biomarkers to detect AD with significant performance. A total of 325,567 EEG biomarkers were investigated, and a panel of six biomarkers was identified and used to create a diagnostic model with high performance (≥85% for sensitivity and 100% for specificity).
Diesel engine oil was subjected to thermal oxidization (TO) for six periods of time (0 h, 24 h, 48 h, 72 h, 96 h, and 120 h) and was subsequently characterized by terahertz time domain spectroscopy (THz-TDS). The THz refractive index generally increased with oxidation time. The measurement method illustrated the potential of THz-TDS when a fixed setup with a single cuvette is used. A future miniaturized setup installed in an engine would be an example of a fixed setup. For the refractive index, there were highly significant differences among the oxidation times across most of the 0.3–1.7 THz range.
The recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approach
... Show MoreAbstract
In this paper, the solutions to class of robust non-linear semi-explicit descriptor control systems with matching condition via optimal control strategy are obtained. The optimal control strategy has been introduced and developed in the sense that, the optimal control solution is robust solution to the given non-linear uncertain semi-explicit descriptor control system. The necessary mathematical proofs and remarks as well as discussions are also proposed. The present approach is step-by-step illustrated by application example to show its effectiveness a and efficiency to compensate the structure uncertainty in the given semi-explicit (descriptor) control
... Show MoreIn this search, a new bioluminescent technique was proved for pyrophosphate which was employed to single- nucleotide polymorphism (SNP) diagnosis using one-base extension reaction. Four Mycobacterium tuberculosis genes were chosen (Rpob, InhA, KatG, GyrA) genes. Fifty-four specimens were used in this study fifty-three proved as drug-resistant specimens by The Iraqi Institute of Chest and Respiratory Diseases in Baghdad., also one specimen was used as a negative control. The procedure of this assay was as follows. A specific primer within each aliquot owning a short 3-OH end of the base of the target gene was hybridized to the single-stranded DNA template. Then, (exo-) Klenow DNA polymerase and one of either ?-thio-dATP, dTTP, dGTP, or dCTP
... Show MoreThe aim of this paper is to shed the light on the concepts of agency theory by measuring one of the problems that arise from it, which is represented by earnings management (EM) practices. The research problem is demonstrated by the failure of some Iraqi banks and their subsequent placement under the supervision of the Central Bank of Iraq, which was attributed, in part, to the inadequacy of the agency model in protecting stakeholders in shareholding institutions, as well as EM, pushed professional institutions to adopt the corporate governance model as a method to regulate the problem of accounting information asymmetry between the parties to the agency. We are using the Beneish M-score model and the financial analysis equations in
... Show MoreRecent developments in technology and the area of digital communications have rendered digital images increasingly susceptible to tampering and alteration by persons who are not authorized to do so. This may appear to be acceptable, especially if an image editing process is necessary to delete or add a particular scene that improves the quality the image. But what about images used in authorized governmental transactions? The consequences can be severe; any altered document is considered forged under the law and may cause confusion. Also, any document that cannot be verified as being authentic is regarded as a fake and cannot be used, inflicting harm on people. The suggested work intends to reduce fraud in electronic documents u
... Show MoreVideo steganography has become a popular option for protecting secret data from hacking attempts and common attacks on the internet. However, when the whole video frame(s) are used to embed secret data, this may lead to visual distortion. This work is an attempt to hide sensitive secret image inside the moving objects in a video based on separating the object from the background of the frame, selecting and arranging them according to object's size for embedding secret image. The XOR technique is used with reverse bits between the secret image bits and the detected moving object bits for embedding. The proposed method provides more security and imperceptibility as the moving objects are used for embedding, so it is difficult to notice the
... Show MoreToday, the world is living in a time of epidemic diseases that spread unnaturally and infect and kill millions of people worldwide. The COVID-19 virus, which is one of the most well-known epidemic diseases currently spreading, has killed more than six million people as of May 2022. The World Health Organization (WHO) declared the 2019 coronavirus disease (COVID-19) after an outbreak of SARS-CoV-2 infection. COVID-19 is a severe and potentially fatal respiratory disease caused by the SARS-CoV-2 virus, which was first noticed at the end of 2019 in Wuhan city. Artificial intelligence plays a meaningful role in analyzing medical images and giving accurate results that serve healthcare workers, especially X-ray images, which are co
... Show MoreBackground: Chronic obstructive pulmonary disease (COPD) is a progressive airflow limitation that is preventable but not curable. It is associated with persistent symptoms that cause a considerable burden on individual productivity at work, and daily activities, and reduced quality of life, also burdening the healthcare system and society. Objectives: The study aims to measure the burden of COPD on patients in terms of daily activities and work productivity. It also seeks to investigate some inflammatory biomarkers' levels and their correlation with selected outcomes. Patients and Methods: A cross-sectional study on 120 stable COPD patients who were diagnosed and treated according to the GOLD guidelines at Kirkuk General Hospital's
... Show More