Biomarkers to detect Alzheimer’s disease (AD) would enable patients to gain access to appropriate services and may facilitate the development of new therapies. Given the large numbers of people affected by AD, there is a need for a low-cost, easy to use method to detect AD patients. Potentially, the electroencephalogram (EEG) can play a valuable role in this, but at present no single EEG biomarker is robust enough for use in practice. This study aims to provide a methodological framework for the development of robust EEG biomarkers to detect AD with a clinically acceptable performance by exploiting the combined strengths of key biomarkers. A large number of existing and novel EEG biomarkers associated with slowing of EEG, reduction in EEG complexity and decrease in EEG connectivity were investigated. Support vector machine and linear discriminate analysis methods were used to find the best combination of the EEG biomarkers to detect AD with significant performance. A total of 325,567 EEG biomarkers were investigated, and a panel of six biomarkers was identified and used to create a diagnostic model with high performance (≥85% for sensitivity and 100% for specificity).
The rapid increase in the number of older people with Alzheimer's disease (AD) and other forms of dementia represents one of the major challenges to the health and social care systems. Early detection of AD makes it possible for patients to access appropriate services and to benefit from new treatments and therapies, as and when they become available. The onset of AD starts many years before the clinical symptoms become clear. A biomarker that can measure the brain changes in this period would be useful for early diagnosis of AD. Potentially, the electroencephalogram (EEG) can play a valuable role in early detection of AD. Damage in the brain due to AD leads to changes in the information processing activity of the brain and the EEG which ca
... Show MoreRheumatoid arthritis (AR) is one of the chronic diseases resulting in many complications such as cardiovascular disease (CVD). Any change in the lipid profiles and myocardial markers indicates cardiovascular disease risk, so this study is designed to monitor the pattern of lipid profiles and myocardial markers in newly diagnosed RA patients. Blood samples were collected from 70 Iraqi patients newly diagnosed with rheumatoid arthritis (male and female) and 30 healthy served as control. These individuals were aged 35-65 years. The serum samples were obtained to determine myocardial markers; included troponin, creatinine kinase (CK), lactate dehydrogenase (LDH), and glutamic oxaloacetic transaminase GOT; and lipid profiles; such as choleste
... Show MoreFraud Includes acts involving the exercise of deception by multiple parties inside and outside companies in order to obtain economic benefits against the harm to those companies, as they are to commit fraud upon the availability of three factors which represented by the existence of opportunities, motivation, and rationalization. Fraud detecting require necessity of indications the possibility of its existence. Here, Benford’s law can play an important role in direct the light towards the possibility of the existence of financial fraud in the accounting records of the company, which provides the required effort and time for detect fraud and prevent it.
This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show MoreAbstract Background: Timely diagnosis of periodontal disease is crucial for restoring healthy periodontal tissue and improving patients’ prognosis. There is a growing interest in using salivary biomarkers as a noninvasive screening tool for periodontal disease. This study aimed to investigate the diagnostic efficacy of two salivary biomarkers, lactate dehydrogenase (LDH) and total protein, for periodontal disease by assessing their sensitivity in relation to clinical periodontal parameters. Furthermore, the study aimed to explore the impact of systemic disease, age, and sex on the accuracy of these biomarkers in the diagnosis of periodontal health. Materials and methods: A total of 145 participants were categorized into three groups based
... Show More That analytical procedures are of analytical tools important because it gives assurance to the auditor-free financial statements of the economic units replace the audit of cases offraud and errors and distortions, and thereby to increase the effectiveness of the audit process and confirm the possibility oftrust and reliance on the financial statements that Adfgaha auditor.
Inspite of identify evidence of proof necessary to enhance the auditor's opinion the results reached in the audit p
Upper limb amputation is a condition that severely limits the amputee’s movement. Patients who have lost the use of one or more of their upper extremities have difficulty performing activities of daily living. To help improve the control of upper limb prosthesis with pattern recognition, non-invasive approaches (EEG and EMG signals) is proposed in this paper and are integrated with machine learning techniques to recognize the upper-limb motions of subjects. EMG and EEG signals are combined, and five features are utilized to classify seven hand movements such as (wrist flexion (WF), outward part of the wrist (WE), hand open (HO), hand close (HC), pronation (PRO), supination (SUP), and rest (RST)). Experiments demonstrate that usin
... Show MoreCommunication of the human brain with the surroundings became reality by using Brain- Computer Interface (BCI) based mechanism. Electroencephalography (EEG) being the non-invasive method has become popular for interaction with the brain. Traditionally, the devices were used for clinical applications to detect various brain diseases but with the advancement in technologies, companies like Emotiv, NeuoSky are coming up with low cost, easily portable EEG based consumer graded devices that can be used in various application domains like gaming, education etc as these devices are comfortable to wear also. This paper reviews the fields where the EEG has shown its impact and the way it has p
Abstract. Full-waveform airborne laser scanning data has shown its potential to enhance available segmentation and classification approaches through the additional information it can provide. However, this additional information is unable to directly provide a valid physical representation of surface features due to many variables affecting the backscattered energy during travel between the sensor and the target. Effectively, this delivers a mis-match between signals from overlapping flightlines. Therefore direct use of this information is not recommended without the adoption of a comprehensive radiometric calibration strategy that accounts for all these effects. This paper presents a practical and reliable radiometric calibration r
... Show MoreThe aim of the present study was to demonstrate the possible role of statins on the inflammatory biomarkers in patients with periodontal disease (PD) This cross-sectional study involved 74 patients with PD and/or dyslipidemia divided into Group A: 34 patients with PD (nonstatins users); Group B: 40 patients with PD (statins users); and Group C: 30 healthy controls. Total cholesterol (TC), triglyceride (TG) and high-density lipoprotein, C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and malondialdehyde (MDA) were measured . Blood pressure prolife and indices of PD were evaluated in each group. Statistical analysis was conducted by using SPSS version 20.0.