Biomarkers to detect Alzheimer’s disease (AD) would enable patients to gain access to appropriate services and may facilitate the development of new therapies. Given the large numbers of people affected by AD, there is a need for a low-cost, easy to use method to detect AD patients. Potentially, the electroencephalogram (EEG) can play a valuable role in this, but at present no single EEG biomarker is robust enough for use in practice. This study aims to provide a methodological framework for the development of robust EEG biomarkers to detect AD with a clinically acceptable performance by exploiting the combined strengths of key biomarkers. A large number of existing and novel EEG biomarkers associated with slowing of EEG, reduction in EEG complexity and decrease in EEG connectivity were investigated. Support vector machine and linear discriminate analysis methods were used to find the best combination of the EEG biomarkers to detect AD with significant performance. A total of 325,567 EEG biomarkers were investigated, and a panel of six biomarkers was identified and used to create a diagnostic model with high performance (≥85% for sensitivity and 100% for specificity).
Irisin is a myokine that controls energy metabolism by making adipose tissue brown. The present goal in doing this research was to determine how irisin concentration relates to other biochemical markers of disease. Hemodialysis (HD) for chronic kidney failure. The study included 30 individuals with end-stage renal disease on HD and 30 healthy subjects as the control group. The ages of all patients and the control group ranged from (25 to 60) years. The excluded criteria included patients with viral hepatitis and diabetes. Serum irisin concentration and the level of fasting serum glucose (FSG), urea, creatinine (Cr), total protein (TP), albumin (Alb), albumin to creatinine ratio (ACR), total cholesterol (TC), alanine aminotransferase (ALT),
... Show MoreCOVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in
Gaucher disease (GD), which is due to a deficiency in the lysosomal enzyme β-glucocerebrosidase, is a rare genetic disorder. It is characterized by a wide variety of clinical manifestations and severity of symptoms, making it difficult to manage. A cross-sectional hospital-based genetic study was undertaken with 32 pediatric patients. We recruited 21 males and 11 females diagnosed with GD, with a male-to-female ratio of 1.91:1. The mean age of the study population was 8.79 ± 4.37 years with an age range from 8 months to 17 years. We included patients on clinical evaluation from 2011 to 2019. An enzyme assay test was used to measure β-glucosidase enzyme activity in leukocytes and the GBA gene s
In this work, the antibacterial effectiveness of face masks made from polypropylene, against Candida albicans and Pseudomonas aeruginosa pathogenic was improved by soaking in gold nanoparticles suspension prepared by a one-step precipitation method. The fabricated nanoparticles at different concentrations were characterized by UV-visible absorption and showed a broad surface Plasmon band at around 520 nm. The FE-SEM images showed the polypropylene fibres highly attached with the spherical AuNPs of diameters around 25 nm over the surfaces of the soaked fibres. The Fourier Transform Infrared Spectroscopy (FTIR) of pure and treated face masks in AuNPs conform to the characteristics bands for the polypropylene bands. There are some differences
... Show MoreAbstract
Objective(s): To assess the job satisfaction during of covid-19 among the nurses in respiratory isolation units of coronavirus disease.
Methodology: A descriptive cross-sectional design was carried out in four hospitals at isolation units of coronavirus disease from the period (21th December, 2021 to 27th January, 2022). A non-probability (convenience) sampling method consists of (300) nurse was selected convenience based on the study criteria. The tool used to measure the job satisfaction is Job satisfaction scale for clinical nursing (JSS-CN). This tool consists of two parts, the first part is for demographic information and consists of 8 items, and the second
... Show MoreThis study, which was conducted in the city of Mosul, through collected 1200 samples from the stool of patients with diarrhea attending hospitals and private clinics for the period from the beginning of January 2019 to the end of December 2019, those whose ages ranged from less than a year-60 year, and for both sexes and by reality 700 samples stool for males and 500 samples stool for females. Samples were collected in clean, sterile, and sealed 40ml plastic bottles. Patient information is noted, name of the parasite, history, sex, age, address. The result showed that climate and temperature have a significant effect on increase the incidence of intestinal parasites through the direct effect on the increase in infection rate. This effect wa
... Show MoreBackground: Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder globally. The prevalence is 25% worldwide, distributed widely in different populations and regions. The highest rates are reported for the Middle East (32%). Due to modern lifestyles and diet, there has been a persistent increase in the number of NAFLD patients. This increase occurred at the same time where there were also increases in the number of people considered being obese all over the world. By analyzing fatty liver risk factors, studies found that body mass index, one of the most classical epidemiological indexes assessing obesity, was associated with the risk of fatty liver.
Objectives: To assess age, sex, and body
... Show MoreBackground: Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder globally. The prevalence is 25% worldwide, distributed widely in different populations and regions. The highest rates are reported for the Middle East (32%). Due to modern lifestyles and diet, there has been a persistent increase in the number of NAFLD patients. This increase occurred at the same time where there were also increases in the number of people considered being obese all over the world. By analyzing fatty liver risk factors, studies found that body mass index, one of the most classical epidemiological indexes assessing obesity, was associated with the risk of fatty liver. Objectives: To assess age, sex, and body mass index (BMI) as
... Show MoreGastroesophageal reflux disease (GERD) is a prevalent clinical condition, that affects millions of individuals worldwide. Objective: To assess the level of soluble HLA-E (sHLA-E) as a biomarker in the diagnosis and immunopathogenesis of GERD patients. Methods: The case-control prospective study included 40 GERD patients who were consulted at the Gastroenterology Unit of AlKindy Teaching Hospital, as along with 40 healthy control subjects. The study period extended from January 2023 to May 2024. Blood was drawn from both groups and serum was separated to assesssHLA-E using a sandwich enzyme-linked immunosorbent assay (ELISA) kit. Results: There was a statistically significant difference in sHLA-E levels between GERD patients and healthy cont
... Show More