Biomarkers to detect Alzheimer’s disease (AD) would enable patients to gain access to appropriate services and may facilitate the development of new therapies. Given the large numbers of people affected by AD, there is a need for a low-cost, easy to use method to detect AD patients. Potentially, the electroencephalogram (EEG) can play a valuable role in this, but at present no single EEG biomarker is robust enough for use in practice. This study aims to provide a methodological framework for the development of robust EEG biomarkers to detect AD with a clinically acceptable performance by exploiting the combined strengths of key biomarkers. A large number of existing and novel EEG biomarkers associated with slowing of EEG, reduction in EEG complexity and decrease in EEG connectivity were investigated. Support vector machine and linear discriminate analysis methods were used to find the best combination of the EEG biomarkers to detect AD with significant performance. A total of 325,567 EEG biomarkers were investigated, and a panel of six biomarkers was identified and used to create a diagnostic model with high performance (≥85% for sensitivity and 100% for specificity).
Numeral recognition is considered an essential preliminary step for optical character recognition, document understanding, and others. Although several handwritten numeral recognition algorithms have been proposed so far, achieving adequate recognition accuracy and execution time remain challenging to date. In particular, recognition accuracy depends on the features extraction mechanism. As such, a fast and robust numeral recognition method is essential, which meets the desired accuracy by extracting the features efficiently while maintaining fast implementation time. Furthermore, to date most of the existing studies are focused on evaluating their methods based on clean environments, thus limiting understanding of their potential a
... Show MoreBackground: Cardiovascular disease (CVD) is an important complication of type 2 diabetes mellitus (T2DM). Oxidative stress plays a major role in the development of CVD. Saliva has a diagnostic properties aiding in the detection of systemic diseases. This study aimed to assess the association between salivary oxidative stress markers and the risk of vascular disease (VD) in T2DM patients. Materials and Methods: One hundred T2DM patients and fifty apparently healthy males were enrolled in this study. Saliva sample was collected for assessment of oxidative stress markers including: lipid peroxidation plasma thiobarbituric acid-reactive substances (TBARS), uric acid (UA) and total antioxidant capacity (TAC) levels. Arterial stiffness index (ASI
... Show MorePeriodontitis is one of the most prevalent bacterial diseases affecting man with up to 90% of the global population affected. Its severe form can lead to the tooth loss in 10-15% of the population worldwide. The disease is caused by a dysbiosis of the local microbiota and one organism that contributes to this alteration in the bacterial population is Prophyromonas gingivalis. This organism possesses a range of virulence factors that appear to contribute to its growth and survival at a periodontal site amongst which is its ability to invade oral epithelial cells. Such an invasion strategy provides a means of evasion of host defence mechanisms, persistence at a site and the opportunity for dissemination to other sites in the mouth. However, p
... Show MoreAmputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte
... Show MoreThe prospective study has been designed to determine some biomarkers in Iraqi female patients with
breast cancer. The current study contained 30 patients whose tissue samples have been collected from
hospitals in Medical City in Baghdad after consent patients themselves and used immunohistochemical
technique to determine these markers. The results showed a significant correlation between ER and PR tissue
markers (Sig = 0.000) and a significant correlation between cyclin E phenotype and cyclin E intensity (Sig =
0.001).
Bladder cancer (BC) is the predominant malignant neoplasm in the urinary system and ranks as the tenth most prevalent malignant tumor worldwide. Compared with females, males displayed a four-fold more common incidence of bladder cancer. It mainly affects men. Bladder cancer is the fourth most prevalent neoplasm in males. The most important protein that makes up high density lipoprotein (HDL), ApoA-I apolipoprotein A1 is essential in regulating the right amount of cholesterol. Multiple inquiries have demonstrated that APOA1 plays a pivotal role in the progression, infiltration, and spread of tumors. Objectives. The objective of this study was to measure the level of urine to serum apolipoprotein A1 in patients suffering from bladder
... Show MoreAbstractBackground:Reduced glomeular filtration rate isassociated with increasedmorbidity in patientswith coronary arterydisease.Objectives :To analyze the declining eGFR andmortality risks in a patients with Chronic KidneyDisease and have had Coronary Artery Diseaseincluding risk factors .Patientsand Methods:The study included (160)patientsbetween the ages of 16 and 87years.Glomerular filtration rate was estimated (eGFR)using the Modification of Diet in Renal Diseaseequationand was categorized in the ranges<60 mL· min−1 per 1.73 m2and≥ 60 ml/min/1.73 m2.Baseline risk factors were analyzed by category ofeGFR,.The studied patients in emergencydepartment, were investigatedusing Coxproportional hazard models adjusting for traditiona
... Show MoreAs one type of resistance furnace, the electrical tube furnace (ETF) typically experiences input noise, measurement noise, system uncertainties, unmodeled dynamics and external disturbances, which significantly degrade its temperature control performance. To provide precise, and robust temperature tracking performance for the ETF, a robust composite control (RCC) method is proposed in this paper. The overall RCC method consists of four elements: First, the mathematical model of the ETF system is deduced, then a state feedback control (SFC) is constructed. Third, a novel disturbance observer (DO) is designed to estimate the lumped disturbance with one observer parameter. Moreover, the stability of the closed loop system including controller
... Show MoreCluster analysis (clustering) is mainly concerned with dividing a number of data elements into clusters. The paper applies this method to create a gathering of symmetrical government agencies with the aim to classify them and understand how far they are close to each other in terms of administrative and financial corruption by means of five variables representing the prevalent administrative and financial corruption in the state institutions. Cluster analysis has been applied to each of these variables to understand the extent to which these agencies are close to other in each of the cases related to the administrative and financial corruption.
Flexible joint robot (FJR) manipulators can offer many attractive features over rigid manipulators, including light weight, safe operation, and high power efficiency. However, the tracking control of the FJR is challenging due to its inherent problems, such as underactuation, coupling, nonlinearities, uncertainties, and unknown external disturbances. In this article, a terminal sliding mode control (TSMC) is proposed for the FJR system to guarantee the finite-time convergence of the systems output, and to achieve the total robustness against the lumped disturbance and estimation error. By using two coordinate transformations, the FJR dynamics is turned into a canonical form. A cascaded finite-time sliding mode observer (CFTSMO) is construct
... Show More