Biomarkers to detect Alzheimer’s disease (AD) would enable patients to gain access to appropriate services and may facilitate the development of new therapies. Given the large numbers of people affected by AD, there is a need for a low-cost, easy to use method to detect AD patients. Potentially, the electroencephalogram (EEG) can play a valuable role in this, but at present no single EEG biomarker is robust enough for use in practice. This study aims to provide a methodological framework for the development of robust EEG biomarkers to detect AD with a clinically acceptable performance by exploiting the combined strengths of key biomarkers. A large number of existing and novel EEG biomarkers associated with slowing of EEG, reduction in EEG complexity and decrease in EEG connectivity were investigated. Support vector machine and linear discriminate analysis methods were used to find the best combination of the EEG biomarkers to detect AD with significant performance. A total of 325,567 EEG biomarkers were investigated, and a panel of six biomarkers was identified and used to create a diagnostic model with high performance (≥85% for sensitivity and 100% for specificity).
Background: Toll-like receptors (TLRs) play a significant role in the activation of adaptive immunity and may have an essential role in the development of rheumatoid arthritis (RA). Objectives: To assess the gene expression of TLR4 in individuals with RA compared to healthy individuals. Methods: From July to December 2022. A total of 100 individuals were encompassed in the study, consisting of 50 individuals diagnosed with RA, of whom 42 were females and 8 were males, with an average age of 45.22 years. Additionally, there were 50 healthy control participants, 40 of whom were females and 10 were males, with an average age of 45.64 years. To assess the TLR4 transcript levels, blood samples were collected from each participant, and RN
... Show MoreAbstract
Robust controller design requires a proper definition of uncertainty bounds. These uncertainty bounds are commonly selected randomly and conservatively for certain stability, without regard for controller performance. This issue becomes critically important for multivariable systems with high nonlinearities, as in Active Magnetic Bearings (AMB) System. Flexibility and advanced learning abilities of intelligent techniques make them appealing for uncertainty estimation. The aim of this paper is to describe the development of robust H2/H∞ controller for AMB based on intelligent estimation of uncertainty bounds using Adaptive Neuro Fuzzy Inference System (ANFIS). Simulatio
... Show MoreNumeral recognition is considered an essential preliminary step for optical character recognition, document understanding, and others. Although several handwritten numeral recognition algorithms have been proposed so far, achieving adequate recognition accuracy and execution time remain challenging to date. In particular, recognition accuracy depends on the features extraction mechanism. As such, a fast and robust numeral recognition method is essential, which meets the desired accuracy by extracting the features efficiently while maintaining fast implementation time. Furthermore, to date most of the existing studies are focused on evaluating their methods based on clean environments, thus limiting understanding of their potential a
... Show MoreAutomatic speaker recognition may achieve remarkable performance in matched training and test conditions. Conversely, results drop significantly in incompatible noisy conditions. Furthermore, feature extraction significantly affects performance. Mel-frequency cepstral coefficients MFCCs are most commonly used in this field of study. The literature has reported that the conditions for training and testing are highly correlated. Taken together, these facts support strong recommendations for using MFCC features in similar environmental conditions (train/test) for speaker recognition. However, with noise and reverberation present, MFCC performance is not reliable. To address this, we propose a new feature 'entrocy' for accurate and robu
... Show MoreSimulation Study
Abstract :
Robust statistics Known as, Resistance to mistakes resulting of the deviation of Check hypotheses of statistical properties ( Adjacent Unbiased , The Efficiency of data taken from a wide range of probability distributions follow a normal distribution or a mixture of other distributions with different standard deviations.
power spectrum function lead to, President role in the analysis of Stationary random processes, organized according to time, may be discrete random variables or continuous. Measuring its total capacity as frequency function.
Estimation methods Share with
... Show MoreAbstract
The Phenomenon of Extremism of Values (Maximum or Rare Value) an important phenomenon is the use of two techniques of sampling techniques to deal with this Extremism: the technique of the peak sample and the maximum annual sampling technique (AM) (Extreme values, Gumbel) for sample (AM) and (general Pareto, exponential) distribution of the POT sample. The cross-entropy algorithm was applied in two of its methods to the first estimate using the statistical order and the second using the statistical order and likelihood ratio. The third method is proposed by the researcher. The MSE comparison coefficient of the estimated parameters and the probability density function for each of the distributions were
... Show MoreAmputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte
... Show MoreBackground Bloodstream infection (BSI) is a life-threatening condition caused by the presence of microorganisms, generally caused by a range of bacteria in the blood. Objectives The aim of this study was to evaluate the possible role of procalcitonin (PCT) and C-reactive protein (CRP) as biomarkers of pediatric BSI. Methodology The study was conducted on 150 blood samples collected from the patient who admitted to Children Welfare Teaching Hospital, Medical City, Baghdad. During the period from November 2020 to March 2021, ninety blood samples from them were positive culture and 60 blood samples were negative culture (control group). The isolates were identified depending on the morphological, microscopic examination, and biochemical tests.
... Show MoreEndometriosis is a common women health disorder that occurs when Endometrial-like tissue grows outside the uterus. This may lead to irregular bleeding , pelvic pain, infertility and other complications. Metformin, because of its activity to improve insulin sensitivity, it is used for the treatment of diabetes; it also has a modulatory effect on ovarian steroid production and has anti-inflammatory properties, all may suggest its possible effect in treatment of endometriosis. This study was planned to determine the effect of metformin on serum levels of&nbs
... Show More