Biomarkers to detect Alzheimer’s disease (AD) would enable patients to gain access to appropriate services and may facilitate the development of new therapies. Given the large numbers of people affected by AD, there is a need for a low-cost, easy to use method to detect AD patients. Potentially, the electroencephalogram (EEG) can play a valuable role in this, but at present no single EEG biomarker is robust enough for use in practice. This study aims to provide a methodological framework for the development of robust EEG biomarkers to detect AD with a clinically acceptable performance by exploiting the combined strengths of key biomarkers. A large number of existing and novel EEG biomarkers associated with slowing of EEG, reduction in EEG complexity and decrease in EEG connectivity were investigated. Support vector machine and linear discriminate analysis methods were used to find the best combination of the EEG biomarkers to detect AD with significant performance. A total of 325,567 EEG biomarkers were investigated, and a panel of six biomarkers was identified and used to create a diagnostic model with high performance (≥85% for sensitivity and 100% for specificity).
Objective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.
Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are
... Show MoreReactive oxygen species (ROS) are produced as a result of biochemical processes that are not in balance with the body's antioxidant defense mechanism. This metabolic dysfunction is referred to the oxidative stress (OS). Metabolic dysfunction-associated diseases are affected by changes in the redox balance. It is now widely recognized that oxidative stress significantly affects diabetes mellitus (DM), particularly type 2 diabetes. The biochemical changes associated with DM could disturb the oxidative milieu, leading to several microvascular complications in diabetic patients. Thus, DM is a perfect disease to explore the harmful consequences of oxidative stress and how to treat it. Oxidative stress triggered by hyperglycemia is
... Show MoreBackground: We aimed to investigate the accuracy of salivary matrix metalloproteinases (MMP)-8 and -9, and tissue inhibitor of metalloproteinase (TIMP)-1 in diagnosing periodontitis and in distinguishing periodontitis stages (S)1 to S3. Methods: This study was a case–control study that included patients with periodontitis S1 to S3 and subjects with healthy periodontia (controls). Saliva was collected, and then, clinical parameters were recorded, including plaque index, bleeding on probing, probing pocket depth, and clinical attachment level. Diagnosis was confirmed by assessing the alveolar bone level using radiography. Salivary biomarkers were assayed using an enzyme-linked immunosorbent assay. Results: A total of 45 patients (15
... Show MoreBackground: Endometrial Cancer (EC) is the malignant tumor originating from endometrium cell (lining of the uterus). EC incidence and mortality have increased in recent years. Routinely used methods for EC diagnosis and treatment are histopathological tissue culture after surgery and postoperative radiotherapy, however there is still not enough efficient treatment for recurrence or progression of this disease. So, there is a critical need for further EC identification by new biological ways for the prognostic diagnosis of it. Objective: This study aimed to look for ways by which could help in diagnosis of EC before the hysterectomy. Materials and Methods: 55 patients with EC and 57 healthy women were involved in this study (up to 45 years)
... Show MoreThe main goal of this research is to determine the impact of some variables that we believe that they are important to cause renal failuredisease by using logistic regression approach.The study includes eight explanatory variables and the response variable represented by (Infected,uninfected).The statistical program SPSS is used to proform the required calculations
Background: Type two diabetic patients have higher risk of cardiovascular and periodontal disease. Furthermore, patients with more severe periodontal disease have higher incidence of cardiovascular disease. This study aimed to assess the association between periodontal health status and the risk of vascular disease in type 2 diabetic patients. Materials and Methods: One hundred type 2 diabetes mellitus patients and fifty apparently healthy males were enrolled in this study. Oral examinations conducted were; plaque Index, calculus index, gingival index, probing pocket depth, and clinical attachment level. For the assessment of vascular risk, arterial stiffness index was used. Results: According to arterial stiffness index, type 2 diabetic p
... Show MoreBackground: Toll-like receptors (TLRs) play a significant role in the activation of adaptive immunity and may have an essential role in the development of rheumatoid arthritis (RA). Objectives: To assess the gene expression of TLR4 in individuals with RA compared to healthy individuals. Methods: From July to December 2022. A total of 100 individuals were encompassed in the study, consisting of 50 individuals diagnosed with RA, of whom 42 were females and 8 were males, with an average age of 45.22 years. Additionally, there were 50 healthy control participants, 40 of whom were females and 10 were males, with an average age of 45.64 years. To assess the TLR4 transcript levels, blood samples were collected from each participant, and RN
... Show MoreEstimation of the unknown parameters in 2-D sinusoidal signal model can be considered as important and difficult problem. Due to the difficulty to find estimate of all the parameters of this type of models at the same time, we propose sequential non-liner least squares method and sequential robust M method after their development through the use of sequential approach in the estimate suggested by Prasad et al to estimate unknown frequencies and amplitudes for the 2-D sinusoidal compounds but depending on Downhill Simplex Algorithm in solving non-linear equations for the purpose of obtaining non-linear parameters estimation which represents frequencies and then use of least squares formula to estimate
... Show More