Preferred Language
Articles
/
VxfMepIBVTCNdQwC3rET
Super-twisting based integral sliding mode control applied to a rotary flexible joint robot manipulator
...Show More Authors

In this paper, a single link flexible joint robot is used to evaluate a tracking trajectory control and vibration reduction by a super-twisting integral sliding mode (ST-ISMC). Normally, the system with joint flexibility has inevitably some uncertainties and external disturbances. In conventional sliding mode control, the robustness property is not guaranteed during the reaching phase. This disadvantage is addressed by applying ISMC that eliminates a reaching phase to ensure the robustness from the beginning of a process. To design this controller, the linear quadratic regulator (LQR) controller is first designed as the nominal control to decide a desired performance for both tracking and vibration responses. Subsequently, discontinuous control was traditionally built by ISMC with a constant reaching law to reject the uncertainties and disturbances acted in the system. To avoid the chattering phenomenon that appears in the classical control law of ISMC, super-twisting is used here instead of constant reaching law. Finally, the comparative assessment is accomplished in order to confirm the superiorities of proposed method. Numerical simulation shows the effectiveness of STISMC over LQR and ISMC in terms of the tracking responses, robustness achievement and chattering reduction.

Scopus Crossref
View Publication
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Cascade position-torque control strategy based on function approximation technique (FAT) for flexible joint robots
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Sat Jul 22 2023
Journal Name
Journal Of Engineering
Hybrid Controller for a Single Flexible Link Manipulator
...Show More Authors

In this study, the dynamic modeling and step input tracking control of single flexible link is studied. The Lagrange-assumed modes approach is applied to get the dynamic model of a planner single link manipulator. A Step input tracking controller is suggested by utilizing the hybrid controller approach to overcome the problem of vibration of tip position through motion which is a characteristic of the flexible link system. The first controller is a modified version of the proportional-derivative (PD) rigid controller to track the hub position while sliding mode (SM) control is used for vibration damping. Also, a second controller (a fuzzy logic based proportional-integral plus derivative (PI+D) control scheme) is developed for both vibra

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun May 12 2019
Journal Name
Al-khwarizmi Engineering Journal
Motion Control of Three Links Robot Manipulator (Open Chain) with Spherical Wrist
...Show More Authors

Robot manipulator is a multi-input multi-output system with high complex nonlinear dynamics, requiring an advanced controller in order to track a specific trajectory. In this work, forward and inverse kinematics are presented based on Denavit Hartenberg notation to convert the end effector planned path from cartesian space to joint space and vice versa where a cubic spline interpolation is used for trajectory segments to ensure the continuity in velocity and acceleration.  Also, the derived mathematical dynamic model is based on Eular Lagrange energy method to contain the effect of friction and disturbance torques beside the inertia and Coriolis effect. Two types of controller are applied ; the nonlinear computed torque control (CTC

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed Nov 22 2023
Journal Name
Actuators
Practical Adaptive Fast Terminal Sliding Mode Control for Servo Motors
...Show More Authors

Position control of servo motor systems is a challenging task because of inevitable factors such as uncertainties, nonlinearities, parametric variations, and external perturbations. In this article, to alleviate the above issues, a practical adaptive fast terminal sliding mode control (PAFTSMC) is proposed for better tracking performance of the servo motor system by using a state observer and bidirectional adaptive law. First, a smooth-tangent-hyperbolic-function-based practical fast terminal sliding mode control (PFTSM) surface is designed to ensure not only fast finite time tracking error convergence but also chattering reduction. Second, the PAFTSMC is proposed for the servo motor, in which a two-way adaptive law is designed to further s

... Show More
View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Fri Aug 13 2021
Journal Name
Journal Européen Des Systèmes Automatisés
Proxy-based sliding mode vibration control with an adaptive approximation compensator for euler-bernoulli smart beams
...Show More Authors

Proxy-based sliding mode control PSMC is an improved version of PID control that combines the features of PID and sliding mode control SMC with continuously dynamic behaviour. However, the stability of the control architecture maybe not well addressed. Consequently, this work is focused on modification of the original version of the proxy-based sliding mode control PSMC by adding an adaptive approximation compensator AAC term for vibration control of an Euler-Bernoulli beam. The role of the AAC term is to compensate for unmodelled dynamics and make the stability proof more easily. The stability of the proposed control algorithm is systematically proved using Lyapunov theory. Multi-modal equation of motion is derived using the Galerkin metho

... Show More
Crossref (2)
Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Ieee Transactions On Industrial Electronics
Finite-Time Continuous Terminal Sliding Mode Control of Servo Motor Systems
...Show More Authors

In this article, a continuous terminal sliding mode control algorithm is proposed for servo motor systems. A novel full-order terminal sliding mode surface is proposed based on the bilimit homogeneous property, such that the sliding motion is finite-time stable independent of the system’s initial condition. A new continuous terminal sliding mode control algorithm is proposed to guarantee that the system states reach the sliding surface in finitetime. Not only the robustness is guaranteed by the proposed controller but also the continuity makes the control algorithm more suitable for the servo mechanical systems. Finally, a numerical example is presented to depict the advantages of the proposed control algorithm. An application in the rota

... Show More
View Publication
Scopus (141)
Crossref (129)
Scopus Clarivate Crossref
Publication Date
Tue Aug 06 2013
Journal Name
Robotica
Function approximation technique-based adaptive virtual decomposition control for a serial-chain manipulator
...Show More Authors
SUMMARY<p>The virtual decomposition control (VDC) is an efficient tool suitable to deal with the full-dynamics-based control problem of complex robots. However, the regressor-based adaptive control used by VDC to control every subsystem and to estimate the unknown parameters demands specific knowledge about the system physics. Therefore, in this paper, we focus on reorganizing the equation of the VDC for a serial chain manipulator using the adaptive function approximation technique (FAT) without needing specific system physics. The dynamic matrices of the dynamic equation of every subsystem (e.g. link and joint) are approximated by orthogonal functions due to the minimum approximation errors produced. The contr</p> ... Show More
View Publication
Scopus (26)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
Robust Adaptive Sliding Mode Controller for a Nonholonomic Mobile Platform
...Show More Authors

In this paper, a robust adaptive sliding mode controller is designed for a mobile platform trajectory tracking.  The mobile platform is an example of a nonholonomic mechanical system. The presence of holonomic constraints reduces the number of degree of freedom that represents the system model, while the nonholonomic constraints reduce the differentiable degree of freedom. The mathematical model was derived here for the mobile platform, considering the existence of one holonomic and two nonholonomic constraints imposed on system dynamics. The partial feedback linearization method was used to get the input-output relation, where the output is the error functions between the position of a certain point on the platform

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Nov 01 2022
Journal Name
Isa Transactions
Robust adaptive active disturbance rejection control of an electric furnace using additional continuous sliding mode component
...Show More Authors

The temperature control process of electric heating furnace (EHF) systems is a quite difficult and changeable task owing to non-linearity, time delay, time-varying parameters, and the harsh environment of the furnace. In this paper, a robust temperature control scheme for an EHF system is developed using an adaptive active disturbance rejection control (AADRC) technique with a continuous sliding-mode based component. First, a comprehensive dynamic model is established by using convection laws, in which the EHF systems can be characterized as an uncertain second order system. Second, an adaptive extended state observer (AESO) is utilized to estimate the states of the EHF system and total disturbances, in which the observer gains are updated

... Show More
View Publication
Scopus (9)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
High Order Sliding Mode Observer-Based Output Feedback Controller Design For Electro-Hydraulic System
...Show More Authors

A perturbed linear system with property of strong observability ensures that there is a sliding mode observer to estimate the unknown form inputs together with states estimation. In the case of the electro-hydraulic system with piston position measured output, the above property is not met. In this paper, the output and its derivatives estimation were used to build a dynamic structure that satisfy the condition of strongly observable. A high order sliding mode observer (HOSMO) was used to estimate both the resulting unknown perturbation term and the output derivatives. Thereafter with one signal from the whole system (piton position), the piston position make tracking to desire one with a simple linear output feedback controller after ca

... Show More
View Publication Preview PDF
Crossref