The analysis of survival and reliability considered of topics and methods of vital statistics at the present time because of their importance in the various demographical, medical, industrial and engineering fields. This research focused generate random data for samples from the probability distribution Generalized Gamma: GG, known as: "Inverse Transformation" Method: ITM, which includes the distribution cycle integration function incomplete Gamma integration making it more difficult classical estimation so will be the need to illustration to the method of numerical approximation and then appreciation of the function of survival function. It was estimated survival function by simulation the way "Monte Carlo". The Entropy method used for the purposes of assessment and estimating and fitting, this along with the use of the classical method. It was to identify the best estimation method through the use of a of comparison criteria: Root of Mean Square Error: RMSE, and the Mean Absolute Percentage Error: MAPE. Sample sizes were selected as (n = 18, 30, 50, 81) which represents the size of data generation n = 18 five-year age groups for the phenomenon being studied and the sample size n = 81 age group represents a unilateral, and replicated the experiment (500) times. The results showed the simulation that the Maximum Likelihood method is the best in the case of small and medium-sized samples where it was applied to the data for five-year age groups suffering from disturbances and confusion of Iraq Household socio-Economic survey: IHSES II2012 while entropy method outperformed in the case of large samples where it was applied to age groups monounsaturated resulting from the use of mathematical method lead to results based on the staging equation data (Formula for Interpolation) placed Sprague (Sprague) and these transactions or what is called Sprague transactions (Sprague multipliers) are used to derive the preparation of deaths and the preparation of the population by unilateral age within the age groups a five-year given the use of the death toll and the preparation of the population in this age group and its environs from a five-year categories by using Excel program where the use of age groups monounsaturated data for accuracy not detect any age is in danger of annihilation.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreIn this paper, we study some cases of a common fixed point theorem for classes of firmly nonexpansive and generalized nonexpansive maps. In addition, we establish that the Picard-Mann iteration is faster than Noor iteration and we used Noor iteration to find the solution of delay differential equation.
The aim of the study is to assess the risk factors which lead to myocardial infarction and relation to some variables. The filed study was carried out from the 1st of April to the end of Sept. 2005. The Sample of the study consisted of (100) patients in lbn-Albeetar and Baghdad Teaching Hospital. The result of the study indicated the following; 45% of patients with age group (41-50) were more exposed to the disease and there is no significant difference was seen in the level of education, Martial status, weight and height. The result shows that there are significant difference in risk factors like hypertension, cholesterol level in blood and diabetes. When analyzed by T.test at level of P < 0.01 and there are significant difference in smoki
... Show MoreObjective: The present study aims to assess the stressful life events for patients with substance abuse in Baghdad city.
Methodology: A descriptive study was carried out at (Baghdad teaching hospital and Ibn-Rushed Psychiatric hospital).
Starting from 1
st of December 2012 to 3
rd of July 2013, A non-probability (purposive) sample of 64 patients that
diagnosed with substance abuse, the data were collected through the use of semi-structured interview by
questionnaire, which consists of three parts sociodemographic data, medical information, and Life events scale
consists of 49-items distributed to six domains including, family and social domain, health domain, security, legal and
criminal domain, work and school do
Abstract
Metal cutting processes still represent the largest class of manufacturing operations. Turning is the most commonly employed material removal process. This research focuses on analysis of the thermal field of the oblique machining process. Finite element method (FEM) software DEFORM 3D V10.2 was used together with experimental work carried out using infrared image equipment, which include both hardware and software simulations. The thermal experiments are conducted with AA6063-T6, using different tool obliquity, cutting speeds and feed rates. The results show that the temperature relatively decreased when tool obliquity increases at different cutting speeds and feed rates, also it
... Show MoreThe interactions of drug amoxicillin with maltose or galactose solutions with a variation of temperature have been discussed by taking in the volumetric and viscometric procedures. Physical properties [densities (ρ) and viscosities (η)] of amoxicillin (AMOX) aqueous solutions and aqueous solutions of two type saccharides (maltose and galactose 0.05m) have been measured at T = (298.15, 303.15 and 308.15) K under atmospheric pressure. The apparent molar volume (ϕv cm3mole-1) has been evaluated from density data and fitted to a Redlich-Mayer equation. The empirical parameters of the Mayer-Redlich equation and apparent molar volume at infinite dilution Ø°v were explicated in terms of interactions from type solute-solvent and solute
... Show MoreThis article co;nsiders a shrunken estimator ·Of Al-Hermyari· and
AI Gobuii (.1) to estimate the mean (8) of a normal clistributicm N (8 cr4) with known variance (cr+), when <:I guess value (So) av11il ble about the mean (B) as· an initial estrmate. This estimator is shown to be
more efficient tl1an the class-ical estimators especially when 8 is close to 8•. General expressions .for bias and MSE -of considered estitnator are gi 'en, witeh some examples. Nut.nerical cresdlts, comparisons and
conclusions ate reported.
Objective: The aim of the study to evaluate the nursing care management for diabetes mellitus patient
with total hip replacement after fractured hip.
Methodology: A field study carried out on patients with diabetes mellitus and have total hip
replacement after fractured hip in orthopedic ward at the hospital of surgical specialization (malefemale)during
January 2002 to January 2003.Physical and psychological nursing
assessment
immediately after the surgery was done for the both subjects (control and experimental) and then a
scientific management with daily nursing care were provided to the experimental subject with daily
nursing care to the patient condition by using a scientific and practical methods and leave th
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More