Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for de-noising noisy CCTV images. Data-store is used tomanage our dataset, which is an object or collection of data that are huge to enter in memory, it allows to read, manage, and process data located in multiple files as a single entity. The CAN architecture provides integral deep learning layers such as input, convolution, back normalization, and Leaky ReLu layers to construct multi-scale. It is also possible to add custom layers like adaptor normalization (µ) and adaptive normalization (Lambda) to the network. The performance of the developed CAN approximation operator on the bilateral filtering noisy image is proven when improving both the noisy reference image and a CCTV foggy image. The three image evaluation metrics (SSIM, NIQE, and PSNR) evaluate the developed CAN approximation visually and quantitatively when comparing the created de-noised image over the reference image.Compared with the input noisy image, these evaluation metrics for the developed CAN de-noised image were (0.92673/0.76253, 6.18105/12.1865, and 26.786/20.3254) respectively
Statistical methods and statistical decisions making were used to arrange and analyze the primary data to get norms which are used with Geographic Information Systems (GIS) and spatial analysis programs to identify the animals production and poultry units in strategic nutrition channels, also the priorities of food insecurity through the local production and import when there is no capacity for production. The poultry production is one of the most important commodities that satisfy human body protein requirements, also the most important criteria to measure the development and prosperity of nations. The poultry fields of Babylon Governorate are located in Abi Ghareg and Al_Kifil centers according to many criteria or factors such as the popu
... Show MoreThis study was aimed to evaluate the effect of spraying nano chitosan loaded with NPK fertilizer and nettle leaf and green tea extracts on the growth and productivity of potato for the spring and fall seasons of 2021.It was conducted at private farm in Wasit Governorate, Iraq, as a factorial experiment (5 × 5) within randomized complete block design using three replicates. The first factor included spraying with four concentrations of chitosan nanoparticles loaded with NPK fertilizer 0, 10. 15 and 20% in addition to chemical fertilization treatment, the second factor was spraying nettle leaf extract 25 and 35 gL-1 and green tea extract with 2 and 4 g.L-1, in addition to the control treatment, spraying with distilled water only. The
... Show MoreNegotiation is considered as one of the most important kinds of communication in the contemporary organizations, which depend on the important role of managerial information systems in providing necessary and suitable information for success of the negotiation process.
Accordingly, this study aims at measuring the extent of the variables effect of managerial information system in the negotiation process.
To achieve this study, two hypotheses were chosen; the first is the correlation relation and the second is the effect, and statistical means represented by correlation coefficient "Spearman" and (R2) were used.
A Number of conclusions were
... Show MoreIn this work, ugzri images of NGC 4425 galaxy are analyzed. The galaxy images are obtained from the seventh Sloan Digital Sky Survey (SDSS) Data Release (DR7). This work was performed with Image Reduction and Analysis Facility (IRAF) and analyzed the structure of the galaxy a bulge, a bar, together with isophotal contour maps and performed a bulge/disk decomposition of the galaxy image. Also, we have estimated the disk position angle, ellipticity, B4 and inclination of the galaxy.
In this work we present a technique to extract the heart contours from noisy echocardiograph images. Our technique is based on improving the image before applying contours detection to reduce heavy noise and get better image quality. To perform that, we combine many pre-processing techniques (filtering, morphological operations, and contrast adjustment) to avoid unclear edges and enhance low contrast of echocardiograph images, after implementing these techniques we can get legible detection for heart boundaries and valves movement by traditional edge detection methods.
Landsat7 of Enhanced thematic mapper plus (ETM+) was launched on April 15, 1999. Four years later, images start degrading due to the scan line corrector (SLC). SLC is a malfunction that results in pixel gaps in images captured by the sensor of Landsat7. The pixel gap regions extend from about one pixel near the image center and reach up to about 14 pixels in width near the image edge. The shape of this loss is like a zigzag line; however, there are different studies about repairing these gaps. The challenge of all studies depends on retrieving inhomogeneous areas because the homogenous area can be retrieved quickly depending on the surrounding area. This research focuses on filling these gaps by utilizing pixels around them
... Show MoreIn this paper, a fast lossless image compression method is introduced for compressing medical images, it is based on splitting the image blocks according to its nature along with using the polynomial approximation to decompose image signal followed by applying run length coding on the residue part of the image, which represents the error caused by applying polynomial approximation. Then, Huffman coding is applied as a last stage to encode the polynomial coefficients and run length coding. The test results indicate that the suggested method can lead to promising performance.
It is well known that sonography is not the first choice in detecting early breast tumors. Improving the resolution of breast sonographic image is the goal of many workers to make sonography a first choice examination as it is safe and easy procedure as well as cost effective. In this study, infrared light exposure of breast prior to ultrasound examination was implemented to see its effect on resolution of sonographic image. Results showed that significant improvement was obtained in 60% of cases.
Diabetic retinopathy is an eye disease in diabetic patients due to damage to the small blood vessels in the retina due to high and low blood sugar levels. Accurate detection and classification of Diabetic Retinopathy is an important task in computer-aided diagnosis, especially when planning for diabetic retinopathy surgery. Therefore, this study aims to design an automated model based on deep learning, which helps ophthalmologists detect and classify diabetic retinopathy severity through fundus images. In this work, a deep convolutional neural network (CNN) with transfer learning and fine tunes has been proposed by using pre-trained networks known as Residual Network-50 (ResNet-50). The overall framework of the proposed
... Show More