Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for de-noising noisy CCTV images. Data-store is used tomanage our dataset, which is an object or collection of data that are huge to enter in memory, it allows to read, manage, and process data located in multiple files as a single entity. The CAN architecture provides integral deep learning layers such as input, convolution, back normalization, and Leaky ReLu layers to construct multi-scale. It is also possible to add custom layers like adaptor normalization (µ) and adaptive normalization (Lambda) to the network. The performance of the developed CAN approximation operator on the bilateral filtering noisy image is proven when improving both the noisy reference image and a CCTV foggy image. The three image evaluation metrics (SSIM, NIQE, and PSNR) evaluate the developed CAN approximation visually and quantitatively when comparing the created de-noised image over the reference image.Compared with the input noisy image, these evaluation metrics for the developed CAN de-noised image were (0.92673/0.76253, 6.18105/12.1865, and 26.786/20.3254) respectively
An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to
... Show MoreNonlinear diffraction pattern can be induced by focusing CW
laser into a thin quartzes cuvette containing nanofluid. The number
of revealed pattern rings indicates to the nonlinear behavior of fluid.
Here, the nonlinear refractive index of each of functionalized single
wall carbon nanotube (F-SWCNTs) suspention and multi wall carbon
nanotube (F-MWCNTs) suspention have been investigated
experimentally .Each of CNTs suspention was at volume fraction of
13×10−5 and 6×10−5. Moreover the laser source at wavelength of
473 nm was used. The results show that SWCNTs suspention
possesses higher nonlinearty than other at the same volume fraction
Biomass has been extensively investigated, because of its presence as clean energy source. Tars and particulates formation problems are still the major challenges in development especially in the implementation of gasification technologies into nowadays energy supply systems. Laser Induced Fluorescence spectroscopy (LIF) method is incorporated for determining aromatic and Polycyclic Aromatic Hydrocarbons (PAH) produced at high temperature gasification technology. The effect of tars deposition when the gases are cooled has been highly reduced by introducing a new concept of measurement cell. The samples of PAH components have been prepared with the standard constrictions of measured PAHs by using gas chromatograph (GC). OPO laser with tun
... Show MoreThe performance of a synergistic combination of electrocoagulation (EC) and electro-oxidation (EO) for oilfield wastewater treatment has been studied. The effect of operative variables such as current density, pH, and electrolyte concentration on the reduction of chemical oxygen demand (COD) was studied and optimized based on Response Surface Methodology (RSM). The results showed that the current density had the highest impact on the COD removal with a contribution of 64.07% while pH, NaCl addition and other interactions affects account for only 34.67%. The optimized operating parameters were a current density of 26.77 mA/cm2 and a pH of 7.6 with no addition of NaCl which results in a COD removal efficiency of 93.43% and a specific energy c
... Show MoreAs a result of the pandemic crisis and the shift to digitization, cyber-attacks are at an all-time high in the modern day despite good technological advancement. The use of wireless sensor networks (WSNs) is an indicator of technical advancement in most industries. For the safe transfer of data, security objectives such as confidentiality, integrity, and availability must be maintained. The security features of WSN are split into node level and network level. For the node level, a proactive strategy using deep learning /machine learning techniques is suggested. The primary benefit of this proactive approach is that it foresees the cyber-attack before it is launched, allowing for damage mitigation. A cryptography algorithm is put
... Show MoreThe current research aimed to investigate the psychometric characteristics of the Arabic version of the Nomophobia scale for the Omani youth. The scale was administered to a random sample of students from public and private universities and colleges in Oman. The research sample consisted of 2507 students, of whom 868 males and 1639 females. The validity of the measure was first checked by presenting the scale to a group of experts in this field. Then the exploratory and confirmatory factor analysis was carried out. The exploratory factor analysis revealed the existence of three main factors: the fear of connectivity loss, the fear of communication loss with others, and the fear of network outages. These factors accounted for 65.6% of the
... Show MoreBackground: Data on the impact of neonatal and total pediatric admissions volume on neonatal mortality are sparse. Objectives: This study is done to estimate the neonatal mortality in relation to neonatal admissions and to total hospital admissions in Al-Alwyia Pediatric Teaching Hospital through years 2005-2012 Type of the study: A retrospective study.Methods: statistical records of all cases admitted to APTH were studied during 2005-2012.Results: Neonatal mortality decreased to the nadir at last year of study period (2012) and reached 6.1% of neonatal admissions compared to 2005 level which was 9.7 %. Mortality rate among premature and low birth weight (LBW) infants decreased also. The study also reveals that neonatal mortality constit
... Show MoreApplying a well-performing heat exchanger is an efficient way to fortify the relatively low thermal response of phase-change materials (PCMs), which have broad application prospects in the fields of thermal management and energy storage. In this study, an improved PCM melting and solidification in corrugated (zigzag) plate heat exchanger are numerically examined compared with smooth (flat) plate heat exchanger in both horizontal and vertical positions. The effects of the channel width (0.5 W, W, and 2 W) and the airflow temperature (318 K, 323 K, and 328 K) are exclusively studied and reported. The results reveal the much better performance of the horizontal corrugated configuration compared with the smooth channel during both melti
... Show More