Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for de-noising noisy CCTV images. Data-store is used tomanage our dataset, which is an object or collection of data that are huge to enter in memory, it allows to read, manage, and process data located in multiple files as a single entity. The CAN architecture provides integral deep learning layers such as input, convolution, back normalization, and Leaky ReLu layers to construct multi-scale. It is also possible to add custom layers like adaptor normalization (µ) and adaptive normalization (Lambda) to the network. The performance of the developed CAN approximation operator on the bilateral filtering noisy image is proven when improving both the noisy reference image and a CCTV foggy image. The three image evaluation metrics (SSIM, NIQE, and PSNR) evaluate the developed CAN approximation visually and quantitatively when comparing the created de-noised image over the reference image.Compared with the input noisy image, these evaluation metrics for the developed CAN de-noised image were (0.92673/0.76253, 6.18105/12.1865, and 26.786/20.3254) respectively
Recently, the theory of Complex Networks gives a modern insight into a variety of applications in our life. Complex Networks are used to form complex phenomena into graph-based models that include nodes and edges connecting them. This representation can be analyzed by using network metrics such as node degree, clustering coefficient, path length, closeness, betweenness, density, and diameter, to mention a few. The topology of the complex interconnections of power grids is considered one of the challenges that can be faced in terms of understanding and analyzing them. Therefore, some countries use Complex Networks concepts to model their power grid networks. In this work, the Iraqi Power Grid network (IPG) has been modeled, visua
... Show MoreIncivility in nursing education can negatively affect the academic achievement. As there is no tool in Arabic to assess incivility among nursing students, there is a need for a valid and reliable tool.
This study aimed to investigate the psychometric properties of the Arabic version of the Incivility in Nursing Education- Revised (INE-R) survey.
Th
In this paper, a mathematical model for the oxidative desulfurization of kerosene had been developed. The mathematical model and simulation process is a very important process due to it provides a better understanding of a real process. The mathematical model in this study was based on experimental results which were taken from literature to calculate the optimal kinetic parameters where simulation and optimization were conducted using gPROMS software. The optimal kinetic parameters were Activation energy 18.63958 kJ/mol, Pre-exponential factor 2201.34 (wt)-0.76636. min-1 and the reaction order 1.76636. These optimal kinetic parameters were used to find the optimal reaction conditions which
... Show MoreThe objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor) were taken in ANN.
... Show MoreGod Almighty put in his great book secrets that do not end, and wonders that do not expire, for he is the one from which the scholars are not satisfied, and he does not create due to the multitude of response, and it is the comprehensive and inhibitory book that God conceals to the worlds, and he challenged the two heavyweights to come up with something like it.
At all times, issues arise in the Noble Qur’an that fit the needs of the people of that time and their culture, for it is an eternal book, characterized by the ability to give, extend and respond to addressing the problems of the age and its variables, when the Arabs had little luck at the time of the message’s descent from the scientific culture, and their proficienc
... Show MoreEducation represents a different their areas, especially after the educational cornerstone of Staff of the community in which young person’s that can stand up and shared the overall development process.
In order for education to be effective in the community, there is a need to develop to cope with the process development of civilization and modern technology. And for that to be achieved the goal of current research to stand on the advancement of the educational process through Knowledge of educational strategies that had previously requirements put forward for the development of educational process as well as through Knowledge of the mo
... Show More
        
