Nowadays, energy demand continuously rises while energy stocks are dwindling. Using current resources more effectively is crucial for the world. A wide method to effectively utilize energy is to generate electricity using thermal gas turbines (GT). One of the most important problems that gas turbines suffer from is high ambient air temperature especially in summer. The current paper details the effects of ambient conditions on the performance of a gas turbine through energy audits taking into account the influence of ambient conditions on the specific heat capacity ( , isentropic exponent ( ) as well as the gas constant of air . A computer program was developed to examine the operation of a power plant at various ambient temperatures and relative humidities. The ambient temperatures ranged from 0 to 45 ºC, with relative humidities from 10 to 90%. The obtained results show that a GT operated at increased inlet air temperatures is characterized by lower net power and thermal efficiency. At higher inlet air temperatures, increased relative humidity has a slight positive impact on the GT cycle net power and its thermal efficiency. Net output power of the GT decreased from 93.3 MW at 15 °C to 70 MW at 45 °C. Its efficiency decreased from 32.32% at 5 °C to 28.3% at 30 °C. Although fuel consumption is reduced, the heat rate as well and the specific fuel consumption (SFC) are enhanced. SFC increased by 5.36% with a 10 °C temperature rise in temperature at a constant relative humidity. Therefore, use of a gas turbine with inlet air cooling and humidification is appropriate for improved GT efficiency.
We demonstrate that the selective hydrogenation of acetylene depends on energy profile of the partial and full hydrogenation routes and the thermodynamic stability of adsorbed C2H2 in comparison to C2H4.
The aim of this study was to develop a sensor based on a carbon paste electrodes (CPEs) modified with used MIP for determination of organophosphorus pesticides (OPPs). The modified electrode exhibited a significantly increased sensitivity and selectivity of (OPPs). The MIP was prepared by thermo-polymerization method using N,N-diethylaminoethymethacrylate (NNDAA) as functional monomer, N,N-1,4-phenylenediacrylamide (NNPDA) as cross-linker, the acetonitrile used as solvent and (Opps) as the template molecule. The three OPPs (diazinon, quinalphos and chlorpyrifos) were chosen as the templates, which have been selected as base analytes which used widely in agriculture sector. The extraction efficiency of the imprinted polymers has been evaluat
... Show MoreABSTRACT
The research aims to analyze the value chain of dairy products in Iraq (Abu Ghraib/Study Case) factories for the year 2022, where value chain rings are identified to discuss and track the most important determinants and problems in the value chain rings of dairy products and their basic and secondary activities, as well as calculate the value added of the products by subtracting the total revenues of products from their variable costs. Research data were collected for the period 2022. Preliminary information and data from its field sources and personal interviews were collected through a questionnaire prepa
The cytotoxicity of different concentrations of purified methionine γ- lyase from Pseudomonas putida on cancer cell lines (RD, AMN3 and AMGM) at 96 hr was studied. The bacterial enzyme with concentration 1000µg/ml was revealed highly cytotoxicity against cancer cell lines in comparison with other concentrations whereas slight cytotoxicity was observed on normal cell (REF).
In this work, porous silicon gas sensor hs been fabricated on n-type crystalline silicon (c-Si) wafers of (100) orientation denoted by n-PS using electrochemical etching (ECE) process at etching time 10 min and etching current density 40 mA/cm2. Deposition of the catalyst (Cu) is done by immersing porous silicon (PS) layer in solution consists of 3ml from (Cu) chloride with 4ml (HF) and 12ml (ethanol) and 1 ml (H2O2). The structural, morphological and gas sensing behavior of porous silicon has been studied. The formation of nanostructured silicon is confirmed by using X-ray diffraction (XRD) measurement as well as it shows the formation of an oxide silicon layer due to chemical reaction. Atomic force microscope for PS illustrates that the p
... Show MoreThe use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement. The main conclusion of this study was that all types of manufactured blended cement conformed to the specification according to ASTM C595-12 (chemical and physical requirements). The percentage of the compress
... Show MoreBACKGROUND: Keratoconus is a progressive non inflammatory bilateral (usually asymmetric) ectatic corneal disease characterized by paraxial stromal thinning ,weakening that lead to corneal surface distortion ,vision loss primarily from irregular astigmatism and myopia and secondly from corneal scar. OBJECTIVE: To evaluate visual and refractive outcomes after intracorneal continuous ring (ICCR) implantation combined with intrapocket corneal collagen cross linking in patient with keratoconus. Setting: Eye Specialty Private Hospital, Baghdad, Iraq. METHODS: This study assessed the results of implantation of Myoring ICCR combined with CXL in 40 eyes with KC. Outcome measures include UDVA,CDVA(spectacle correction),refraction, complications and s
... Show More