In this work, satellite images classification for Al Chabaish marshes and the area surrounding district in (Dhi Qar) province for years 1990,2000 and 2015 using two software programming (MATLAB 7.11 and ERDAS imagine 2014) is presented. Proposed supervised classification method (Modified Vector Quantization) using MATLAB software and supervised classification method (Maximum likelihood Classifier) using ERDAS imagine have been used, in order to get most accurate results and compare these methods. The changes that taken place in year 2000 comparing with 1990 and in year 2015 comparing with 2000 are calculated. The results from classification indicated that water and vegetation are decreased, while barren land, alluvial soil and shallow water are increased for year 2000 comparing with 1990. Water, vegetation and barren land are increased, while alluvial soil and shallow water decreased for years 2015 comparing with 2000. The classification accuracy for the proposed method (MVQ) is 90.1%, 90.9% and 90.2% for years 1990, 2000 and 2015, respectively.
A band rationing method is applied to calculate the salinity index (SI) and Normalized Multi-Band Drought Index (NMDI) as pre-processing to take Agriculture decision in these areas is presented. To separate the land from other features that exist in the scene, the classical classification method (Maximum likelihood classification) is used by classified the study area to multi classes (Healthy vegetation (HV), Grasslands (GL), Water (W), Urban (U), Bare Soil (BS)). A Landsat 8 satellite image of an area in the south of Iraq are used, where the land cover is classified according to indicator ranges for each (SI) and (NMDI).
The useful of remote sensing techniques in Environmental Engineering and another science is to save time, Coast and efforts, also to collect more accurate information under monitoring mechanism. In this research a number of statistical models were used for determining the best relationships between each water quality parameter and the mean reflectance values generated for different channels of radiometer operate simulated to the thematic Mappar satellite image. Among these models are the regression models which enable us to as certain and utilize a relation between a variable of interest. Called a dependent variable; and one or more independent variables
This study focusses on the effect of using ICA transform on the classification accuracy of satellite images using the maximum likelihood classifier. The study area represents an agricultural area north of the capital Baghdad - Iraq, as it was captured by the Landsat 8 satellite on 12 January 2021, where the bands of the OLI sensor were used. A field visit was made to a variety of classes that represent the landcover of the study area and the geographical location of these classes was recorded. Gaussian, Kurtosis, and LogCosh kernels were used to perform the ICA transform of the OLI Landsat 8 image. Different training sets were made for each of the ICA and Landsat 8 images separately that used in the classification phase, and used to calcula
... Show MoreFractal geometry is receiving increase attention as a quantitative and qualitative model for natural phenomena description, which can establish an active classification technique when applied on satellite images. In this paper, a satellite image is used which was taken by Quick Bird that contains different visible classes. After pre-processing, this image passes through two stages: segmentation and classification. The segmentation carried out by hybrid two methods used to produce effective results; the two methods are Quadtree method that operated inside Horizontal-Vertical method. The hybrid method is segmented the image into two rectangular blocks, either horizontally or vertically depending on spectral uniformity crit
... Show MoreSpot panchromatic satellite image had been employed to study and know the difference Between ground and satellite data( DN ,its values varies from 0-255) where it is necessary to convert these DN values to absolute radiance values through special equations ,later it converted to spectral reflectance values .In this study a monitoring of the environmental effect resulted from throwing the sewage drainages pollutants (industrial and home) into the Tigris river water in Mosul, was achieved, which have an effect mostly on physical characters specially color and turbidity which lead to the variation in Spectral Reflectance of the river water ,and it could be detected by using many remote sensing techniques. The contaminated areas within th
... Show MoreThis research including lineament automated extraction by using PCI Geomatica program, depending on satellite image and lineament analysis by using GIS program. Analysis included density analysis, length density analysis and intersection density analysis. When calculate the slope map for the study area, found the relationship between the slope and lineament density.
The lineament density increases in the regions that have high values for the slope, show that lineament play an important role in the classification process as it isolates the class for the other were observed in Iranian territory, clearly, also show that one of the lineament hit shoulders of Galal Badra dam and the surrounding areas dam. So should take into consideration
Multispectral remote sensing image segmentation can be achieved using a multithresholding technique. This paper studies the effect of changing the window size of the two dimensional (2D) fast Otsu algorithm that presented by Zhang. From the results, it shown that this method behaves as a search machine for the valleys (an automatic threshold), between the gray levels of the histogram with changing the size of slide window.
Keywords Image Segmentation, (2D) Fast Otsu method, Multithresholding, Automatic thresholding, (2D) histogram image.
The field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots. To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accura
... Show More