Preferred Language
Articles
/
VRaFrosBVTCNdQwCH9ar
Satellite image classification using KL-transformation and modified vector quantization
...Show More Authors

In this work, satellite images classification for Al Chabaish marshes and the area surrounding district in (Dhi Qar) province for years 1990,2000 and 2015 using two software programming (MATLAB 7.11 and ERDAS imagine 2014) is presented. Proposed supervised classification method (Modified Vector Quantization) using MATLAB software and supervised classification method (Maximum likelihood Classifier) using ERDAS imagine have been used, in order to get most accurate results and compare these methods. The changes that taken place in year 2000 comparing with 1990 and in year 2015 comparing with 2000 are calculated. The results from classification indicated that water and vegetation are decreased, while barren land, alluvial soil and shallow water are increased for year 2000 comparing with 1990. Water, vegetation and barren land are increased, while alluvial soil and shallow water decreased for years 2015 comparing with 2000. The classification accuracy for the proposed method (MVQ) is 90.1%, 90.9% and 90.2% for years 1990, 2000 and 2015, respectively.

Publication Date
Tue Dec 07 2021
Journal Name
2021 14th International Conference On Developments In Esystems Engineering (dese)
Content Based Image Retrieval Based on Feature Fusion and Support Vector Machine
...Show More Authors

View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun Jul 01 2018
Journal Name
International Journal Of Engineering Research And Management
The first and Second Order Polynomial Models with Double Scalar Quantization for Image Compression
...Show More Authors

Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun May 01 2016
Journal Name
2016 Al-sadeq International Conference On Multidisciplinary In It And Communication Science And Applications (aic-mitcsa)
Landsat-8 (OLI) classification method based on tasseled cap transformation features
...Show More Authors

View Publication
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Thu Jun 01 2017
Journal Name
International Journal Of Engineering Research And Advanced Technology
The Use of First Order Polynomial with Double Scalar Quantization for Image Compression
...Show More Authors

Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Engineering
Satellite Images Classification in Rural Areas Based on Fractal Dimension
...Show More Authors

Fractal geometry is receiving increase attention as a quantitative and qualitative model for natural phenomena description, which can establish an active classification technique when applied on satellite images. In this paper, a satellite image is used which was taken by Quick Bird that contains different visible classes. After pre-processing, this image passes through two stages: segmentation and classification. The segmentation carried out by hybrid two methods used to produce effective results; the two methods are Quadtree method that operated inside Horizontal-Vertical method. The hybrid method is segmented the image into two rectangular blocks, either horizontally or vertically depending on spectral uniformity crit

... Show More
View Publication Preview PDF
Publication Date
Tue May 20 2008
Journal Name
Journal Of Planner And Development
Estimating Water Quality from Satellite Image and Reflectance Data
...Show More Authors

The useful of remote sensing techniques in Environmental Engineering and another science is to save time, Coast and efforts, also to collect more accurate information under monitoring mechanism. In this research a number of statistical models were used for determining the best relationships between each water quality parameter and the mean reflectance values generated for different channels of radiometer operate simulated to the thematic Mappar satellite image. Among these models are the regression models which enable us to as certain and utilize a relation between a variable of interest. Called a dependent variable; and one or more independent variables

View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Calculation of Salinity and Soil Moisture indices in south of Iraq - Using Satellite Image Data
...Show More Authors

A band rationing method is applied to calculate the salinity index (SI) and Normalized Multi-Band Drought Index (NMDI) as pre-processing to take Agriculture decision in these areas is presented. To separate the land from other features that exist in the scene, the classical classification method (Maximum likelihood classification) is used by classified the study area to multi classes (Healthy vegetation (HV), Grasslands (GL), Water (W), Urban (U), Bare Soil (BS)). A Landsat 8 satellite image of an area in the south of Iraq are used, where the land cover is classified according to indicator ranges for each (SI) and (NMDI).

View Publication
Scopus (8)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed Aug 17 2022
Journal Name
Aip Conference Proceedings
The effect of using Gaussian, Kurtosis and LogCosh as kernels in ICA on the satellite classification accuracy
...Show More Authors

This study focusses on the effect of using ICA transform on the classification accuracy of satellite images using the maximum likelihood classifier. The study area represents an agricultural area north of the capital Baghdad - Iraq, as it was captured by the Landsat 8 satellite on 12 January 2021, where the bands of the OLI sensor were used. A field visit was made to a variety of classes that represent the landcover of the study area and the geographical location of these classes was recorded. Gaussian, Kurtosis, and LogCosh kernels were used to perform the ICA transform of the OLI Landsat 8 image. Different training sets were made for each of the ICA and Landsat 8 images separately that used in the classification phase, and used to calcula

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Mar 01 2017
Journal Name
2017 Annual Conference On New Trends In Information & Communications Technology Applications (ntict)
An efficient color quantization using color histogram
...Show More Authors

View Publication
Scopus (6)
Crossref (5)
Scopus Crossref