Respiratory tract infections in sheep are among the important health problems that affect all sheep ages around the world. Nine bacterial isolates obtained from sheep with respiratory tract infections were selected to be used in the current study. The isolates included 3 Staphylococcus aureus, 4 Klebsiella pneumoniae, and 2 Pseudomonas aeruginosa. Following the primers design by the Primer3Plus software tool and optimization of the conventional polymerase chain reaction (PCR), the primers were validated for their use in the multiplex PCR experiments. The MFEprimer program was used to check the suitability of the primer set combinations for multiplex PCR. The MFEprimer software was successful in designing the multiplex-PCR experiments and determining the optimal primer set combinations. Multiplex PCR was able to amplify specific DNA sequences of one, two or three target genes of these mixed microorganisms in the same PCR reaction tube. This technique efficiently detected combinations of two organisms, either S. aureus with K. pneumoniae, S. aureus with P. aeruginosa or K. pneumoniae with P. aeruginosa. Moreover, multiplex PCR was also able to detect the presence of the three organisms together in the same reaction tube. To conclude, this study confirmed multiplex-PCR as a specific, sensi- tive, rapid, accurate, and cost-effective molecular diagnostic method for identification and differentiation of three clinically important bacteria associated with sheep respiratory tract infections, including S. aureus, P. aeruginosa, and K. pneumoniae. This can efficiently support control and treatment of such diseases and would increase the economy of the animals’ owners and wellbeing of the animals.
This research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squa
... Show MoreMost recent studies have focused on using modern intelligent techniques spatially, such as those
developed in the Intruder Detection Module (IDS). Such techniques have been built based on modern
artificial intelligence-based modules. Those modules act like a human brain. Thus, they should have had the
ability to learn and recognize what they had learned. The importance of developing such systems came after
the requests of customers and establishments to preserve their properties and avoid intruders’ damage. This
would be provided by an intelligent module that ensures the correct alarm. Thus, an interior visual intruder
detection module depending on Multi-Connect Architecture Associative Memory (MCA)
Anomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the
... Show MoreCommunity detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a
... Show MoreThe ground charge density distributions (CDD), elastic charge form factors and proton, charge, neutron, and matter root mean square (rms) radii for stable 40Ca and 48Ca have been calculated using single-particle radial wave functions of Woods-Saxon (WS) and harmonic-oscillator (HO) potentials. Different central potential depths are used for each subshell which is adjusted so as to reproduce the experimental single-nucleon binding energies. An excellent agreement between the calculated rms charge radii and experimental data are found for both nuclei using WS and HO potentials. The calculated proton rms radii for 40Ca are found to be in good agreement with experiment data using both WS and HO potentials while the results for 48Ca showed an ov
... Show More