Preferred Language
Articles
/
UhgADJYBVTCNdQwC-YES
A method of multi-dimensional variable selection for additive partial linear models.
...Show More Authors

In high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection criteria, as- sessing the correct detection of zero coefficients and the false omission of nonzero coef- ficients. A practical application involving financial data from the Baghdad Soft Drinks Company demonstrates their utility in identifying key predictors of stock market value. The results indicate that MAVE-SCAD performs well in high-dimensional and complex scenarios, whereas MAVE-ALASSO is better suited to small samples, producing more parsimonious models. These results highlight the effectiveness of these two methods in addressing key challenges in semiparametric modeling

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Aug 25 2012
Journal Name
Wireless Personal Communications
Multi-Objective Evolutionary Algorithm Based on Decomposition for Energy Efficient Coverage in Wireless Sensor Networks
...Show More Authors

Scopus (58)
Crossref (44)
Scopus Clarivate Crossref
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Physics
Capacitance-Voltage and Current-Voltage Characteristic for Multi- Walled Carbon Nanotubes Grown in Oxygen Atmosphere
...Show More Authors

Carbon nanotubes were prepared by an arc-discharge method,
under different values of pressure of oxygen gas. The structure of
multi-walled carbon nanotubes powders has been characterized by
low-angle X-ray diffraction .The morphology of carbon nanotube
powder was examined by transmission electron microscope. The
capacitance-voltage and current- voltage (dark and illumination
current) characterization were measured under different values of
pressure (10-3, 10-4, 10-5) mbar of oxygen gas

View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Computer Networks
An improved multi-objective evolutionary algorithm for detecting communities in complex networks with graphlet measure
...Show More Authors

View Publication
Scopus (8)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Mon Jan 28 2019
Journal Name
Soft Computing
Bio-inspired multi-objective algorithms for connected set K-covers problem in wireless sensor networks
...Show More Authors

Scopus (13)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Fri Oct 04 2024
Journal Name
Analytical And Bioanalytical Chemistry Research
Optimization and Validation of a GC-FID/QuEChERS Method for Quantitative Determination of Spiromesifen Residues in Tomato Fruits, Leaves and Soil Matrices
...Show More Authors

Pesticides serve a crucial function in contemporary farming practices, safeguarding agricultural crops against pest infestations and boosting production outputs. However, indiscriminate use has caused environmental and human health damage. This study aimed to develop and validate a gas chromatography-flame ionization detection (GC-FID) methodology for the direct and routine analysis of spiromesifen residues in soil, leaves, and tomato fruits. The proposed method prioritizes simplicity by avoiding derivatization steps, offering advantages over existing approaches that utilize lengthy multi-step extraction or derivatization prior to GC analysis. A key novelty of this work is the development of a QuEChERS extraction coupled directly to GC-FID

... Show More
Scopus (1)
Scopus
Publication Date
Sat May 01 2021
Journal Name
Civil Engineering Journal
The Suitability of Bailey Method for Design of Local Asphalt Concrete Mixture
...Show More Authors

The study investigated the behaviour of asphalt concrete mixes for aggregate gradations, according to the Iraqi specification using the Bailey method designed by an Excel spreadsheet. In mixing aggregates with varying gradations (coarse and fine aggregate), The Bailey method is a systematic methodology that offers aggregate interlocking as the backbone of the framework and a controlled gradation to complete the blends. Six types of gradation are used according to the bailey method considered in this study. Two-course prepared Asphalt Concrete Wearing and Asphalt Concrete binder, the Nominal Maximum Aggregate Sizes (NMAS) of the mixtures are 19 and 12.5 mm, respectively. The total number of specimens was 240 for both layers (15 samp

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Effect of Variable Parameters on Carbon Residue of Iraqi Vacuum Gas Oil using Ultrasound Techniques
...Show More Authors

An ultrasonic treatment was applied to the vacuum gas oil at intervals of 5 to 30 minutes, at 70°C.  In this work, the improvement of the important properties of Iraqi vacuum gas oil, such as carbon residue, was studied with several parameter conditions that affect vacuum efficiency, such as sonication time (5, 10, 15, 20, 25, and 30) min, power amplitude (10–50%). After ultrasonic treatment, the carbon residue of vacuum gas oil was evaluated using a Conradson carbon residue meter (ASTM D189). The experiment revealed that the oil's carbon residue had decreased by 16%. As a consequence of the experiment It was discovered that ultrasonic treatment might reduce the carbon residual and density of oil samples being studied. It also notice

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Parameters of General Linear Model in Presence of Heteroscedastic Problem and High Leverage Points
...Show More Authors

Linear regression is one of the most important statistical tools through which it is possible to know the relationship between the response variable and one variable (or more) of the independent variable(s), which is often used in various fields of science. Heteroscedastic is one of the linear regression problems, the effect of which leads to inaccurate conclusions. The problem of heteroscedastic may be accompanied by the presence of extreme outliers in the independent variables (High leverage points) (HLPs), the presence of (HLPs) in the data set result unrealistic estimates and misleading inferences. In this paper, we review some of the robust

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Subgroups and Orbits by Companion Matrix in Three Dimensional Projective Space
...Show More Authors

The aim of this paper is to construct cyclic subgroups of the projective general linear group over  from the companion matrix, and then form caps of various degrees in . Geometric properties of these caps as secant distributions and index distributions are given and determined if they are complete. Also, partitioned of  into disjoint lines is discussed.

View Publication Preview PDF
Scopus (8)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Feb 01 2025
Journal Name
Algorithms
Three-Dimensional Object Recognition Using Orthogonal Polynomials: An Embedded Kernel Approach
...Show More Authors

Computer vision seeks to mimic the human visual system and plays an essential role in artificial intelligence. It is based on different signal reprocessing techniques; therefore, developing efficient techniques becomes essential to achieving fast and reliable processing. Various signal preprocessing operations have been used for computer vision, including smoothing techniques, signal analyzing, resizing, sharpening, and enhancement, to reduce reluctant falsifications, segmentation, and image feature improvement. For example, to reduce the noise in a disturbed signal, smoothing kernels can be effectively used. This is achievedby convolving the distributed signal with smoothing kernels. In addition, orthogonal moments (OMs) are a cruc

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref