In high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection criteria, as- sessing the correct detection of zero coefficients and the false omission of nonzero coef- ficients. A practical application involving financial data from the Baghdad Soft Drinks Company demonstrates their utility in identifying key predictors of stock market value. The results indicate that MAVE-SCAD performs well in high-dimensional and complex scenarios, whereas MAVE-ALASSO is better suited to small samples, producing more parsimonious models. These results highlight the effectiveness of these two methods in addressing key challenges in semiparametric modeling
ان السبب الرئيسي لاختيار الموضوع كونه من الاساليب الادارية الحديثة التي تهدف الى انجاح المنظمة او الشركة المبحوثة, اذ تمثلت مشكلة البحث في ما دور الادارة بالرؤية المشتركة في تعزيز التسويق الابداعي بالشركة المبحوثة, يهدف البحث الى تسليط الضوء على مفهوم الادارة بالرؤية المشتركة وانعكاساتها على التسويق الابداعي للمنظمة ، باعتبارها منهج اداري حديث يسهم في تغيير وتجديد وتطوير واقع المنظمة المبحوثة( الشرك
... Show More