In high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection criteria, as- sessing the correct detection of zero coefficients and the false omission of nonzero coef- ficients. A practical application involving financial data from the Baghdad Soft Drinks Company demonstrates their utility in identifying key predictors of stock market value. The results indicate that MAVE-SCAD performs well in high-dimensional and complex scenarios, whereas MAVE-ALASSO is better suited to small samples, producing more parsimonious models. These results highlight the effectiveness of these two methods in addressing key challenges in semiparametric modeling
In this paper, compared eight methods for generating the initial value and the impact of these methods to estimate the parameter of a autoregressive model, as was the use of three of the most popular methods to estimate the model and the most commonly used by researchers MLL method, Barg method and the least squares method and that using the method of simulation model first order autoregressive through the design of a number of simulation experiments and the different sizes of the samples.
Background: Change in palatal vault shape and Reinforcement of high impact acrylic denture base resin may in turn affect the dimensional accuracy of acrylic resin and affecting the fitness of the denture. The aim of study is to evaluate the effect of fiber reinforcement for high-impact acrylic resin denture base with different palatal vault shapes on linear dimensional change and effect of palatal vault shapes on linear dimensional changes of non-reinforced and fiber reinforced high impact denture base acrylic resin Material and method: Three different palatal vault shapes were prepared on standard casts using CNC (computer numerical control) machine. 60 samples of heat polymerized high impact acrylic resin maxillary denture base were fabri
... Show MoreBackground: Change in palatal vault shape and Reinforcement of high impact acrylic denture base resin may in turn affect the dimensional accuracy of acrylic resin and affecting the fitness of the denture.This study evaluated tostudy the effect of fiber reinforcement for high-impact acrylic resin denture base with different palatal vault shapes on adaptation or gap space between the denture base and the stone cast and compare with non-fiber reinforcement and effect of palatal vault shapes on adaptation of non-reinforced and fiber reinforced high impact denture base acrylic resin Material and method: Three different palatal vault shapes were prepared on standard casts using CNC (computer numerical control) machine. 60 samples of heat polymeri
... Show MoreThis study deals with the elimination of methyl orange (MO) from an aqueous solution by utilizing the 3D electroFenton process in a batch reactor with an anode of porous graphite and a cathode of copper foam in the presence of granular activated carbon (GAC) as a third pole, besides, employing response surface methodology (RSM) in combination with Box-Behnk Design (BBD) for studying the effects of operational conditions, such as current density (3–8 mA/cm2), electrolysis time (10–20 min), and the amount of GAC (1–3 g) on the removal efficiency beside to their interaction. The model was veiled since the value of R2 was high (>0.98) and the current density had the greatest influence on the response. The best removal efficiency (MO Re%)
... Show MoreThe alternating direction implicit method (ADI) is a common classical numerical method that was first introduced to solve the heat equation in two or more spatial dimensions and can also be used to solve parabolic and elliptic partial differential equations as well. In this paper, We introduce an improvement to the alternating direction implicit (ADI) method to get an equivalent scheme to Crank-Nicolson differences scheme in two dimensions with the main feature of ADI method. The new scheme can be solved by similar ADI algorithm with some modifications. A numerical example was provided to support the theoretical results in the research.
Shadow detection and removal is an important task when dealing with color outdoor images. Shadows are generated by a local and relative absence of light. Shadows are, first of all, a local decrease in the amount of light that reaches a surface. Secondly, they are a local change in the amount of light rejected by a surface toward the observer. Most shadow detection and segmentation methods are based on image analysis. However, some factors will affect the detection result due to the complexity of the circumstances. In this paper a method of segmentation test present to detect shadows from an image and a function concept is used to remove the shadow from an image.
The process of identifying the region is not an easy process when compared with other operations within the attribute or similarity. It is also not difficult if the process of identifying the region is based on the standard and standard indicators in its calculation. The latter requires the availability of numerical and relative data for the data of each case Any indicator or measure is included in the legal process
The class of quasi semi -convex functions and pseudo semi -convex functions are presented in this paper by combining the class of -convex functions with the class of quasi semi -convex functions and pseudo semi -convex functions, respectively. Various non-trivial examples are introduced to illustrate the new functions and show their relationships with -convex functions recently introduced in the literature. Different general properties and characteristics of this class of functions are established. In addition, some optimality properties of generalized non-linear optimization problems are discussed. In this generalized optimization problems, we used, as the objective function, quasi semi -convex (respectively, strictly quasi semi -convex
... Show More