The influence and hazard of fire flame are one of the most important parameters that affecting the durability and strength of structural members. This research studied the influence of fire flame on the behavior of reinforced concrete beams affected by repeated load. Nine self- compacted reinforced concrete beams were castellated, all have the same geometric layout (0.15x0.15x1.00) m, reinforcement details and compressive strength (50 Mpa). To estimate the effect of fire flame disaster, four temperatures were adopted (200, 300, 400 and 500) oC and two method of cooling were used (graduated and sudden). In the first cooling method, graduated, the tested beams were leaved to cool in air while in the second method, sudden, water splash was used to reduce the temperature. Eight of the tested beams were divided in to four groups, each were burned to one of the adopted temperature for about half an hour and cooled by the adopted cooling methods (one by sudden cooling and the other by graduated cooling). After burning and cooling the beams were tested under the effect of repeated load (loading – unloading) for five cycle and then up to failure. As a compared with the non- burned beam, the results indicated that the ultimate load capacity of the tested beams were reduced by (16, 23, 54 and 71)% after being burned to (200, 300, 400 and 500) oC , respectively, for a case of sudden cooling and by (8, 14, 36 and 64)% , respectively, for a case of graduated cooling. It was also found that the effect of sudden cooling was greater than that in a case of graduated cooling. Regarding the failure mode, there was a different between the non-burred beam and the other ones even that all of them had the same geometric layout, compressive strength and reinforcement details. The failure mode for all burned beams was combined shear- flexure failure which was belong to the reduction in the compressive strength of the concrete due to the effect of the temperature rising , while the failure mode of the non-burned beam was flexure failure which was compatible with the preliminary design. It was also detected that the residual deflection proportion directly with the temperature, as the temperature increase to (200, 300, 400 and 500) oC the residual deflection compared with the non-burned beam increased by (32, 48, 326 and 358)% for a case of sudden cooling and by (13, 29, 303 and 332)% for a case of graduated cooling. Another effect was appear represented by the method of cooling, the results showed that the sudden cooling had more effect on the residual deflection than the graduated cooling by (15-6)% approximately. To vanish the residual deflection, numbers of cycle (loading-unloading) were required. It was found that this number increase as the temperature of burning increased and it’s also larger in a case of sudden cooling.
The present paper is an experimental study to improve the productivity of the conventional solar still. This done by modifying conventional still in a way that the distilled basin is larger than distillation basin, thus providing an increase in the condensation surface and speeding up the condensation process. Moreover, increase in the dimensions of the distilled base helps coupling reflective panels to the distilled base to reflect incident solar radiation to the distillation basin. For this purpose , two solar stills were made, one conventional designand another made according to the proposed design. The two solar stills were tested during the period from February to July 2009 under varying weather conditions of Basra, Iraq (latitude o
... Show MoreThis paper shews how to estimate the parameter of generalized exponential Rayleigh (GER) distribution by three estimation methods. The first one is maximum likelihood estimator method the second one is moment employing estimation method (MEM), the third one is rank set sampling estimator method (RSSEM)The simulation technique is used for all these estimation methods to find the parameters for generalized exponential Rayleigh distribution. Finally using the mean squares error criterion to compare between these estimation methods to find which of these methods are best to the others
Gypseous soils are spread in several regions in the world including Iraq, where it covers more than 28.6% [1] of the surface region of the country. This soil, with high gypsum content causes different problems in construction and strategic projects. As a result of water flow through the soil mass, permeability and chemical arrangement of these soils vary over time due to the solubility and leaching of gypsum. In this study the soil of 36% gypsum content, is taken from one location about 100 km (62 mi) southwest of Baghdad, where the sample is taken from depth (0.5 - 1) m below the natural ground surface and mixed with (3%, 6%, 9%) of Copolymer and Styrene-butadiene Rubber to improve t
This paper present a simple and sensitive method for the determination of DL-Histidine using FIA-Chemiluminometric measurement resulted from oxidation of luminol molecule by hydrogen peroxide in alkaline medium in the presence of DL-Histidine. Using 70?l. sample linear plot with a coefficient of determination 95.79% for (5-60) mmol.L-1 while for a quadratic relation C.O.D = 96.44% for (5-80) mmol.L-1 and found that guadratic plot in more representative. Limit of detection was 31.93 ?g DL-Histidine (S/N = 3), repeatability of measurement was less that 5% (n=6). Positive and negative ion interferances was removed by using minicolume containing ion exchange resin located after injection valve position.