Humanity's relationship with the environment is a delicate balance. Since the industrial revolution, the world's population has grown at an exponential rate, and this has a major environmental effect. Deforestation, pollution, and global climate change are just a few of the negative consequences of population and technological growth. Particulates, Sulphur dioxide (SO2), and nitrogen oxides (NOx) are the primary pollutants that harm our health. These contaminants may be directly emitted into the atmosphere (primary pollutants) or formed in the atmosphere from primary pollutants reacting (secondary pollutants. Tropospheric ozone is created When water reacts with volatile organic compounds (VOC) and nitrogen oxides (NOx) in the presence of sunlight, nitrogen dioxide is produced. is formed when NO is oxidized, as Sulphur dioxide or nitrogen oxides react with water, acid rain results. These contaminants have negative consequences for human health (low concentrations cause eye, nose, throat, and lung irritation) and the environment, as they contribute to acidification and eutrophication, as well as the formation of particulates and tropospheric ozone (photochemical smog). Electricity production and the combustion of fossil fuels in high-temperature manufacturing processes is the primary source of SO2 and NOx. Particulates are as a direct product of any type of industrial combustion or heating. Particulates and nitrogen oxides (NOx) are two types of contaminants. also linked to traffic and transportation. All these molecules of greenhouse gases that penetrate the atmosphere It's called atmospheric emissions. In order to meet the Paris Agreement's goal of maintaining a 1.5°C average global temperature increase, net CO2 emissions must reach zero by 2050, implying that the amount entering the atmosphere must exceed the amount absorbed by natural and technological sinks.
Thin films Tin sulfide SnS pure and doped with different ratios of Cu (X=0, 0.01, 0.03 and 0.05) were prepared using thermal evaporation with a vacuum of 4*10-6mbar on two types of substrates n-type Si and glass with (500) nm thickness for solar cell application. X-ray diffraction and AFM analysis were carried out to explain the influence of Cu ratio dopant on structural and morphological properties respectively. SnS phase appeared forming orthorhombic structure with preferred orientation (111), increase the crystallinity degree and surface roughness with increase Cu ratio. UV/Visible measurement revealed the decrease in energy gap from 1.9eV for pure SnS to 1.5 for SnS: Cu (0.05) making these samples suitable f
... Show MoreA novel technique for nanoparticles with a chemical method and impact for resistance bacteria methicillin-resistant Staphylococcus aureus (MRSA), UV-visible analysis confirmed the by Fourier transform infrared spectroscopy (FT-IR) and Energy dispersive X-Ray (EDX), Scanning electron microscope (SEM) and X-ray diffraction pattern estimation antimicrobial excellent antibacterial activity against MRSA (with zone of inhibition of 11 ± 02 mm , 9 ± 01 mm,8 ± 03 mm and 7.5 ± 02 mm and 6.5 ± 02 mm) at different concentrations (0.5 ,0.25, 0.125, 0.0625, 0.03125) mg/ml while good activity was 16 ± 03 mm at 17 ± 02 mm zone at 0.25, 0.125 mg/mL, respectively. The increase in microorganism resistance to antibiotics a couple of have caused
... Show MoreMaterial obtained from the demolition of concrete structures and milling of flexible pavements has the highest potential for recyclability. This study aimed to evaluate the performance of hot mix asphalt with the concurrent use of recycled asphalt pavement (RAP) and recycled concrete aggregate (RCA). Contents of RAP and RCA were varied from 0% to 50% by fixing the total recycling materials percentage to 50%. Penetration grade 40/50 virgin binder and waste engine oil (WEO) as rejuvenator were used in the present study. A series of tests, such as Scanning electron microscopy (SEM), Marshall stability, indirect tensile strength test, IDEAL CT, uniaxial compression test, and resilient modulus test, were carried out to assess the performance of
... Show MoreThe aim of the study is the assessment of changes in the land cover within Mosul City in the north of Iraq using Geographic Information Systems (GIS) and remote sensing techniques during the period (2014-2018). Satellite images of the Landsat 8 on this period have been selected to classify images in order to measure normalized difference vegetation index (NDVI) to assess land cover changes within Mosul City. The results indicated that the vegetative distribution ratio in 2014 is 4.98% of the total area under study, decreased to 4.77% in 2015 and then decreased to 4.54
Background: Routine supplementation of vitamin D to infants is justifiable since vitamin D deficiency, and its consequences are highly prevalent not only in developing countries but worldwide. Maintaining a normal level of vitamin D is crucial in order to have a normal skeletal, as well as, extra-skeletal health. Knowledge of mothers regarding importance of vitamin D supplementation affect the health of their babies in a positive manner if accompanied by appropriate practice.
Objective: To determine the level of knowledge, attitude and practice of Iraqi mothers of under or equal 12 months old infants in Baghdad, AL-Rusafa, regarding vitamin D supplementation for their infants.
Typ
... Show MoreThe use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow
... Show MoreAs tight gas reservoirs (TGRs) become more significant to the future of the gas industry, investigation into the best methods for the evaluation of field performance is critical. While hydraulic fractured well in TRGs are proven to be most viable options for economic recovery of gas, the interpretation of pressure transient or well test data from hydraulic fractured well in TGRs for the accurate estimation of important reservoirs and fracture properties (e.g. fracture length, fracture conductivity, skin and reservoir permeability) is rather very complex and difficult because of the existence of multiple flow profiles/regimes. The flow regimes are complex in TGRs due to the large hydraulic fractures n