Humanity's relationship with the environment is a delicate balance. Since the industrial revolution, the world's population has grown at an exponential rate, and this has a major environmental effect. Deforestation, pollution, and global climate change are just a few of the negative consequences of population and technological growth. Particulates, Sulphur dioxide (SO2), and nitrogen oxides (NOx) are the primary pollutants that harm our health. These contaminants may be directly emitted into the atmosphere (primary pollutants) or formed in the atmosphere from primary pollutants reacting (secondary pollutants. Tropospheric ozone is created When water reacts with volatile organic compounds (VOC) and nitrogen oxides (NOx) in the presence of sunlight, nitrogen dioxide is produced. is formed when NO is oxidized, as Sulphur dioxide or nitrogen oxides react with water, acid rain results. These contaminants have negative consequences for human health (low concentrations cause eye, nose, throat, and lung irritation) and the environment, as they contribute to acidification and eutrophication, as well as the formation of particulates and tropospheric ozone (photochemical smog). Electricity production and the combustion of fossil fuels in high-temperature manufacturing processes is the primary source of SO2 and NOx. Particulates are as a direct product of any type of industrial combustion or heating. Particulates and nitrogen oxides (NOx) are two types of contaminants. also linked to traffic and transportation. All these molecules of greenhouse gases that penetrate the atmosphere It's called atmospheric emissions. In order to meet the Paris Agreement's goal of maintaining a 1.5°C average global temperature increase, net CO2 emissions must reach zero by 2050, implying that the amount entering the atmosphere must exceed the amount absorbed by natural and technological sinks.
Contamination of surface and groundwater with excessive concentrations of fluoride is of significant health hazard. Adsorption of fluoride onto waste materials of no economic value could be a potential approach for the treatment of fluoride-bearing water. This experimental and modeling study was devoted to investigate for the first the fluoride removal using unmodified waste granular brick (WGB) in a fixed bed running in continuous mode. Characterization of WGB was carried out by FT-IR, SEM, and EDX analysis. The batch mode experiments showed that they were affected by several parameters including contact time, initial pH, and sorbent dosage. The best values of these parameters that provided maximum removal percent (82%) with the in
... Show MoreDate stones were used as precursor for the preparation of activated carbons by chemical
activation with ferric chloride and zinc chloride. The effects of operating conditions represented
by the activation time, activation temperature, and impregnation ratio on the yield and adsorption
capacity towards methylene blue (MB) of prepared activated carbon by ferric chloride activation
(FAC) and zinc chloride activation (ZAC) were studied. For FAC, an optimum conditions of 1.25
h activation time, 700 °C activation temperature, and 1.5 impregnation ratio gave 185.15 mg/g
MB uptake and 47.08 % yield, while for ZAC, 240.77 mg/g MB uptake and 40.46 % yield were
obtained at the optimum conditions of 1.25 h activation time, 500
Objective: The current study aimed identifying the impact of rehabilitative exercises combined with ultrasonic waves on reducing pain in people with carpal tunnel compression and determining how these activities affect range of motion of the upper limb for those suffering from carpal tunnel compression. Research methodology: With pre- and post-tests, the researchers employed the experimental method in the form of two equal groups, the experimental and the control. The scientific community and sample are among the priorities that fall on the researcher, so The scientific community is determined by those suffering from carpal tunnel compression, numbering (14) patients. (12) Patients were approved and two were excluded from the resear
... Show MoreActivation of farnesoid X receptor (FXR) markedly attenuates development of atherosclerosis in animal models. However, the underlying mechanism is not well elucidated. Here, we show that the FXR agonist, obeticholic acid (OCA), increases fecal cholesterol excretion and macrophage reverse cholesterol transport (RCT) dependent on activation of hepatic FXR. OCA does not increase biliary cholesterol secretion, but inhibits intestinal cholesterol absorption. OCA markedly inhibits hepatic cholesterol 7α‐hydroxylase (
As material flow cost accounting technology focuses on the most efficient use of resources like energy and materials while minimizing negative environmental effects, the research aims to show how this technology can be applied to promote green productivity and its reflection in attaining sustainable development. In addition to studying sustainability, which helps to reduce environmental impacts and increase green productivity, the research aims to demonstrate the knowledge bases for accounting for the costs of material flow and green productivity. It also studies the technology of accounting for the costs of material flow in achieving sustainable development and the role of green productivity in achieving sustainable development. According
... Show MoreIt is important to note that Posaconazole (POCZ) is a newly developed extended-spectrum triazole that belongs to BCS class II and has a solubility of less than 1µg/ml. In patients with a weakened immune system, POCZ has been shown to be effective as an antifungal treatment for invasive infections caused by candida and aspergillus species. The nano-micelles technique can be used to increase POCZ solubility. In order to increase their apparent solubility in water, nano-micelles are made by combining macromolecules that self-assemble into ordered structures capable of entrapping hydrophobic drug molecules in the interior domain. Dispersed colloidal systems, of which nano-micelles are a subset, are a large and diverse group. Composed of a p
... Show MoreBackground: A great dental and biomedical interest had been paid to silver nanoparticles because of their antimicrobial activity. Objective: To evaluate the antimicrobial and cytotoxic activity of a newly developed Nano-silver fluoride that was synthesized from moringa oleifera leaf extract against S. mutants. Material and method: The green synthesis method was used to prepare Nano-silver fluoride from moringa oleifera leaf extract. The minimum inhibitory concentration and the minimum bactericidal concentration were evaluated using brain heart infusion plates, while the cytotoxicity was evaluated by the hemolytic activity. Results: Nano-silver fluoride had a bactericidal and bacteriostatic effect (MIC was 60 ppm a
... Show More