Building a system to identify individuals through their speech recording can find its application in diverse areas, such as telephone shopping, voice mail and security control. However, building such systems is a tricky task because of the vast range of differences in the human voice. Thus, selecting strong features becomes very crucial for the recognition system. Therefore, a speaker recognition system based on new spin-image descriptors (SISR) is proposed in this paper. In the proposed system, circular windows (spins) are extracted from the frequency domain of the spectrogram image of the sound, and then a run length matrix is built for each spin, to work as a base for feature extraction tasks. Five different descriptors are generated from the run length matrix within each spin and the final feature vector is then used to populate a deep belief network for classification purpose. The proposed SISR system is evaluated using the English language Speech Database for Speaker Recognition (ELSDSR) database. The experimental results were achieved with 96.46 accuracy; showing that the proposed SISR system outperforms those reported in the related current research work in terms of recognition accuracy.
Face recognition is a crucial biometric technology used in various security and identification applications. Ensuring accuracy and reliability in facial recognition systems requires robust feature extraction and secure processing methods. This study presents an accurate facial recognition model using a feature extraction approach within a cloud environment. First, the facial images undergo preprocessing, including grayscale conversion, histogram equalization, Viola-Jones face detection, and resizing. Then, features are extracted using a hybrid approach that combines Linear Discriminant Analysis (LDA) and Gray-Level Co-occurrence Matrix (GLCM). The extracted features are encrypted using the Data Encryption Standard (DES) for security
... Show MoreIdentifying the total number of fruits on trees has long been of interest in agricultural crop estimation work. Yield prediction of fruits in practical environment is one of the hard and significant tasks to obtain better results in crop management system to achieve more productivity with regard to moderate cost. Utilized color vision in machine vision system to identify citrus fruits, and estimated yield information of the citrus grove in-real time. Fruit recognition algorithms based on color features to estimate the number of fruit. In the current research work, some low complexity and efficient image analysis approach was proposed to count yield fruits image in the natural scene. Semi automatic segmentation and yield calculation of fruit
... Show MoreOne of the significant stages in computer vision is image segmentation which is fundamental for different applications, for example, robot control and military target recognition, as well as image analysis of remote sensing applications. Studies have dealt with the process of improving the classification of all types of data, whether text or audio or images, one of the latest studies in which researchers have worked to build a simple, effective, and high-accuracy model capable of classifying emotions from speech data, while several studies dealt with improving textual grouping. In this study, we seek to improve the classification of image division using a novel approach depending on two methods used to segment the images. The first
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023
The present analysis targets to recognize the influence of the separate teaching approach on the accomplishment of grammar for scholars of the College of Islamic Sciences. The target of attaining this target led the investigations developing the subsequent null theories: 1. No statistically substantial variance is happened at the consequence level of 0.05 between the mean scores of the scholars in the investigational category who learnt consistent with the separate learning approach and the mean scores of the scholars in the control category who learnt in the conventional method in the accomplishment test. 2. No statistically substantial variance has been observed at the consequence level of 0.05 in the mean differences between the
... Show MoreOne of the crucial public health problems worldwide is the urinary tract infections (UTIs) that are derived from uropathogenic bacteria (UPBs). Slime layer is known to have the ability to permit bacteria to achieve smooth surfaces attachment like catheters and prosthetic implants which in turn, facilitate biofilm formation and may cause lethal infections. On the other hand, Extended-spectrum beta-lactamase (ESBL) production is considered a growing concern among UPBs due to the limiting of the treatment options and contributes to resistance toward antibiotics. The principal study's point is the finding out the slime layer and ESBL production in Escherichia coli and Klebsiella pneumoniae of uropathogenic origin. Ten ready isolates (five isola
... Show More