In present work the effort has been put in finding the most suitable color model for the application of information hiding in color images. We test the most commonly used color models; RGB, YIQ, YUV, YCbCr1 and YCbCr2. The same procedures of embedding, detection and evaluation were applied to find which color model is most appropriate for information hiding. The new in this work, we take into consideration the value of errors that generated during transformations among color models. The results show YUV and YIQ color models are the best for information hiding in color images.
Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show MoreMonaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreActivity recognition (AR) is a new interesting and challenging research area with many applications (e.g. healthcare, security, and event detection). Basically, activity recognition (e.g. identifying user’s physical activity) is more likely to be considered as a classification problem. In this paper, a combination of 7 classification methods is employed and experimented on accelerometer data collected via smartphones, and compared for best performance. The dataset is collected from 59 individuals who performed 6 different activities (i.e. walk, jog, sit, stand, upstairs, and downstairs). The total number of dataset instances is 5418 with 46 labeled features. The results show that the proposed method of ensemble boost-based classif
... Show MoreThe research aims to identify the academic problems of family counseling diploma students at Saudi Universities. In addition, to identify the differences in these problems according to gender, marital status, place of study, academic specialization, and GPA. The sample consisted of (491) students. The researcher has used one questionnaire for academic problems prepared by the researcher. The research revealed the following results: There were academic problems among family counseling diploma students at Saudi Universities, the most problems were related to the systems and administrations of the university, then the field training, the buildings, classrooms and campus facilities, then the academic courses, after that the exams, then
... Show MoreThe logistic regression model is one of the oldest and most common of the regression models, and it is known as one of the statistical methods used to describe and estimate the relationship between a dependent random variable and explanatory random variables. Several methods are used to estimate this model, including the bootstrap method, which is one of the estimation methods that depend on the principle of sampling with return, and is represented by a sample reshaping that includes (n) of the elements drawn by randomly returning from (N) from the original data, It is a computational method used to determine the measure of accuracy to estimate the statistics, and for this reason, this method was used to find more accurate estimates. The ma
... Show MoreThe aims of this study to diagnose the role of the (relationship and impact) Academic driving practices dimensions (model the way, inspire a shared vision, challenge the process, enable others to act, encourage the heart ) in the activation of human capital (investment and development) for (knowledge, skills, expertise, creative and training capabilities) in a sample of university professors in Baghdad city(Baghdad University, Al Mustansiriya University, University of Technology). (367 )samples were distributed to (232 at the University of Baghdad, 97 at Al-Mustansiriya University and 38 at the University of Technology). The goals of descriptive analytical method research have been used, questionnaire has been a main tool for dat
... Show MoreResumo Objetivos: determinar a eficiência e segurança de três regimes de misoprostol para interrupção da gravidez no segundo trimestre em indivíduos com duas ou mais cicatrizes de cesariana. Métodos: um estudo transversal incluiu 100 gestantes entre 13ª e 26ª semanas de gestação com duas cesarianas (CEs) anteriores que foram agendadas para interrupção da gravidez com uso de misoprostol. Os pacientes foram convenientemente designados para regimes de 100 µg/3 horas, 200 µg/3 horas ou 400 µg/3 horas. O desfecho primário foi o tempo para o aborto, os desfechos secundários foram efeitos colaterais e complicações. Resultados: foi encontrada associação significativa entre o número de cesáreas anteriores e o maior
... Show More