The current study performed in order to detect and quantify epicatechin in two tea samples of Camellia sinensis (black and green tea) by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Extraction of epicatechin from black and green tea was done by using two different methods: maceration (cold extraction method) and decoction (hot extraction method). Qualitative and quantitative determinations of epicatechin in two tea samples were investigated. Epicatechin identification was made by utilizing preliminary chemical tests and TLC. This identification was also boosted by HPLC and then quantified epicatechin in all ethyl acetate fractions of two tea samples. This research revealed the existence of epicatechin in black and green tea according to TLC and HPLC. The 50% aqueous ethanol was better solvent for extraction of epicatechin from leaves of tea. Quantitative estimation of epicatechin by HPLC revealed that ethyl acetate fraction of DGTAE contains the higher concentration of epicatechin than other analyzed fractions. Conclusion, tea is an excellent source of catechins particularly epicatechin that possessed various pharmacological effects.
98 samples were collected from various clinical sources included (Burns, wounds, urines, sputums, blood) From the city of Baghdad, After performing the biochemical and microscopic examination, 52 isolates were obtained for Pseudomonas aeruginosa, 17 (32.7%) isolates from burn infection, 12 (23%) isolates from Wound infection 11 (21.2%) isolates from urine infection, 7 (13.5%) isolates of sputum and 5 (9.6%) isolates from blood. Bacteria susceptibility to form biofilm has been detectedby microtiter plate method, The results showed that 80% of the bacterial isolates were produced the biofilm with different proportions, alg D gene (alginate production) has been detected by polymerase chain reaction (PCR) Which plays an essential role in the fo
... Show MoreBotnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper
Lymphoma is a cancer arising from B or T lymphocytes that are central immune system components. It is one of the three most common cancers encountered in the canine; lymphoma affects middle-aged to older dogs and usually stems from lymphatic tissues, such as lymph nodes, lymphoid tissue, or spleen. Despite the advance in the management of canine lymphoma, a better understanding of the subtype and tumor aggressiveness is still crucial for improved clinical diagnosis to differentiate malignancy from hyperplastic conditions and to improve decision-making around treating and what treatment type to use. This study aimed to evaluate a potential novel biomarker related to iron metabolism,
... Show MoreFor the period from February 2014 till May 2014, one hundred and nine lactose fermenter clinical isolates from different samples (urine, stool, wound swab, blood, and sputum) were collected from Alyarmok, Alkadimiya, and Baghdad teaching hospitals at Baghdad governorate. Identification of all Klebsiella pneumoniae isolates were carried out depending on macroscopic, microscopic characterizations, conventional biochemical tests, and Api 20E system. Fifty-three (48.62%) isolates represented K. pneumoniae; however, 51.73% represented other bacteria. Susceptibility test was achieved to all fifty-three K. pneumoniae isolates using five antibiotic disks (Ceftazidime, Ceftriaxone, Cefotaxime, Imipenem, and Meropenem). Most of tested isolates (90
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreThe Internet of Things (IoT) is an expanding domain that can revolutionize different industries. Nevertheless, security is among the multiple challenges that it encounters. A major threat in the IoT environment is spoofing attacks, a type of cyber threat in which malicious actors masquerade as legitimate entities. This research aims to develop an effective technique for detecting spoofing attacks for IoT security by utilizing feature-importance methods. The suggested methodology involves three stages: preprocessing, selection of important features, and classification. The feature importance determines the most significant characteristics that play a role in detecting spoofing attacks. This is achieved via two techniques: decision tr
... Show MoreDetection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreClinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
The results of the present study showed that twenty-five samples were collected for the age group 35–40 years and four samples for the age group 65–70 years for both genders. The results showed that 48 (48%) of the samples were obtained from the hands, 16 (16%) from the legs, 12 (12%) from the abdominal area, and 10 (10%) from the chest area. The four (4%) samples were obtained from burns in the back and thighs area. The samples taken according to the cause of burns were 40 (40%) due to hot water, hot liquids, or hot steam, followed by 18 (18%) due to the use of hot tools, 15 (15%) due to fires, 12 (12%) due to electric currents, 10 (10%) due to chemicals such as strong acids, alkaline lye, paint thinner, or gasoline, and 5 (5%) due
... Show More