Preferred Language
Articles
/
SxeAO5ABVTCNdQwCjoXx
Epicatechin product of Camellia sinensis leaves detection by thin layer chromatography and high performance liquid chromatography
...Show More Authors

The current study performed in order to detect and quantify epicatechin in two tea samples of Camellia sinensis (black and green tea) by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Extraction of epicatechin from black and green tea was done by using two different methods: maceration (cold extraction method) and decoction (hot extraction method). Qualitative and quantitative determinations of epicatechin in two tea samples were investigated. Epicatechin identification was made by utilizing preliminary chemical tests and TLC. This identification was also boosted by HPLC and then quantified epicatechin in all ethyl acetate fractions of two tea samples. This research revealed the existence of epicatechin in black and green tea according to TLC and HPLC. The 50% aqueous ethanol was better solvent for extraction of epicatechin from leaves of tea. Quantitative estimation of epicatechin by HPLC revealed that ethyl acetate fraction of DGTAE contains the higher concentration of epicatechin than other analyzed fractions. Conclusion, tea is an excellent source of catechins particularly epicatechin that possessed various pharmacological effects.

Scopus Crossref
Publication Date
Mon Mar 29 2021
Journal Name
Journal Of Engineering
Extracting Four Solar Model Electrical Parameters of Mono-Crystalline Silicon (mc-Si) and Thin Film (CIGS) Solar Modules using Different Methods
...Show More Authors

Experimental measurements were done for characterizing current-voltage and power-voltage of two types of photovoltaic (PV) solar modules; monocrystalline silicon (mc-Si) and copper indium gallium di-selenide (CIGS). The conversion efficiency depends on many factors, such as irradiation and temperature. The assembling measures as a rule cause contrast in electrical boundaries, even in cells of a similar kind. Additionally, if the misfortunes because of cell associations in a module are considered, it is hard to track down two indistinguishable photovoltaic modules. This way, just the I-V, and P-V bends' trial estimation permit knowing the electrical boundaries of a photovoltaic gadget with accuracy. This measure

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Tue Oct 10 2017
Journal Name
مجلة كلية التربية الاساسية/الجامعة المستنصرية
Detection of some major elements and protein in Fusarium wilt disease infected tomato(Lycopersicon esculentum) treated with Arbuscular mycorrhizal fungi
...Show More Authors

Abstract The present study was Conducted to evaluate the effect of amixture of three species of arbuscular mycorrhizal fungi ( Glomus etunicatum , G. leptotichum and Rhizophagus intraradices ) in Influence on the percentage of the components of NPK and protein of tomato leaves and roots infected with Fusarium oxysporum f.sp. Lycopersici wich cause Fusarial wilt disease , planted for 8 weeks in the presence of the organic matter ( peatmose) , using pot cultures in aplastic green house , Results indicated significant increase in the percentage of the elements of NK and protein of tomato leaves and roots In the control treatment (C), While the percentage of the element P was after infection with the pathogen 4 weaks after mycorrhiza

... Show More
Publication Date
Thu Aug 10 2017
Journal Name
Journal Of The College Of Basic Education
Detection of some major elements and protein in Fusarium wilt disease infected tomato(Lycopersicon esculentum) treated with Arbuscular mycorrhizal fung
...Show More Authors

The present study was Conducted to evaluate the effect of amixture of three species of arbuscular mycorrhizal fungi ( Glomus etunicatum , G. leptotichum and Rhizophagus intraradices ) in Influence on the percentage of the components of NPK and protein of tomato leaves and roots infected with Fusarium oxysporum f.sp. Lycopersici wich cause Fusarial wilt disease , planted for 8 weeks in the presence of the organic matter ( peatmose) , using pot cultures in aplastic green house , Results indicated significant increase in the percentage of the elements of NK and protein of tomato leaves and roots In the control treatment (C), While the percentage of the element P was after infection with the pathogen 4 weaks after mycorrhizal colonization in al

... Show More
Publication Date
Wed Feb 22 2023
Journal Name
Iraqi Journal Of Science
Detection of blaKPC Gene in Some Clinical Klebsiella pneumoniae Isolates in Baghdad
...Show More Authors

For the period from February 2014 till May 2014, one hundred and nine lactose fermenter clinical isolates from different samples (urine, stool, wound swab, blood, and sputum) were collected from Alyarmok, Alkadimiya, and Baghdad teaching hospitals at Baghdad governorate. Identification of all Klebsiella pneumoniae isolates were carried out depending on macroscopic, microscopic characterizations, conventional biochemical tests, and Api 20E system. Fifty-three (48.62%) isolates represented K. pneumoniae; however, 51.73% represented other bacteria. Susceptibility test was achieved to all fifty-three K. pneumoniae isolates using five antibiotic disks (Ceftazidime, Ceftriaxone, Cefotaxime, Imipenem, and Meropenem). Most of tested isolates (90

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 28 2023
Journal Name
The Iraqi Journal Of Veterinary Medicine
Haemoglobin Epsilon as a Biomarker for the Molecular Detection of Canine ‎Lymphoma
...Show More Authors

Lymphoma is a cancer arising from B or T lymphocytes that are central immune system ‎components. It is one of the three most common cancers encountered in the canine; ‎lymphoma affects middle-aged to older dogs and usually stems from lymphatic tissues, ‎such as lymph nodes, lymphoid tissue, or spleen. Despite the advance in the management of ‎canine lymphoma, a better understanding of the subtype and tumor aggressiveness is still ‎crucial for improved clinical diagnosis to differentiate malignancy from hyperplastic ‎conditions and to improve decision-making around treating and what treatment type to use. ‎This study aimed to evaluate a potential novel biomarker related to iron metabolism,

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Tue Apr 01 2025
Journal Name
Mesopotamian Journal Of Cybersecurity
The Impact of Feature Importance on Spoofing Attack Detection in IoT Environment
...Show More Authors

The Internet of Things (IoT) is an expanding domain that can revolutionize different industries. Nevertheless, security is among the multiple challenges that it encounters. A major threat in the IoT environment is spoofing attacks, a type of cyber threat in which malicious actors masquerade as legitimate entities. This research aims to develop an effective technique for detecting spoofing attacks for IoT security by utilizing feature-importance methods. The suggested methodology involves three stages: preprocessing, selection of important features, and classification. The feature importance determines the most significant characteristics that play a role in detecting spoofing attacks. This is achieved via two techniques: decision tr

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Mon May 09 2022
Journal Name
مجلة كلية التربية الاساسية الجامعة المستنصرية
Detection of sul1 resistance gene in Acinetobacter baumannii from different Clinical cases
...Show More Authors

Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D

... Show More
View Publication Preview PDF
Scopus (32)
Crossref (22)
Scopus Crossref
Publication Date
Wed May 10 2023
Journal Name
Diagnostics
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
...Show More Authors

Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with

... Show More
View Publication
Scopus (29)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Wed Jun 16 2021
Journal Name
Cognitive Computation
Deep Transfer Learning for Improved Detection of Keratoconus using Corneal Topographic Maps
...Show More Authors
Abstract <p>Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b</p> ... Show More
View Publication
Scopus (43)
Crossref (34)
Scopus Clarivate Crossref