Reducing the drag force has become one of the most important concerns in the automotive industry. This study concentrated on reducing drag through use of some external modifications of passive flow control, such as vortex generators, rear under body diffuser slices and a rear wing spoiler. The study was performed at inlet velocity (V=10,20,30,40 m/s) which correspond to an incompressible car model length Reynolds numbers (Re=2.62×105, 5.23×105, 7.85×105 and 10.46×105), respectively and we studied their effect on the drag force. We also present a theoretical study finite volume method (FVM) of solving Reynolds-averaged Navier-tokes equations (RANS) using a realizable k–epsilon (k-ε) turbulence model, conducted on a car, model KIA Pride, which is popular in Iraq and Iran. All computational analysis and modifications were carried out using the ANSYS Fluent 19 computational fluid dynamics (CFD) software and SOLIDWORKS 2018 modeller. The drag coefficient of the analysed car was found to be 0.34 and the results show that the drag can be reduced up to1.73% using vortex generators, up to 3.05% using a rear wing spoiler and up to 2.47% using rear under-body diffuser slices modifications, whereas it may be reduced up to 3.8% using all previous modifications together.
Continuous flow injection analysis (CFIA) is one of the simplest, easiest, and multilateral analytical automation methods in moist chemical analysis. This method depends on changing the physical and chemical properties of a part of the specimen spread out from the specimen injected into the carrier stream. The CFIA technique uses automatic analysis of samples with high efficiency. The CFIA PC compatibility also allows specimens to be treated automatically, reagents to be added, and reaction conditions to be closely monitored. The CFIA is one of the automated chemical analysis methods in which a successive specimen sample is to be estimated and injected into a vector stream from a flowing solution that meets the reagent and mixes at a spe
... Show MoreUtilizing phase change materials in thermal energy storage systems is commonly considered as an alternative solution for the effective use of energy. This study presents numerical simulations of the charging process for a multitube latent heat thermal energy storage system. A thermal energy storage model, consisting of five tubes of heat transfer fluids, was investigated using Rubitherm phase change material (RT35) as the. The locations of the tubes were optimized by applying the Taguchi method. The thermal behavior of the unit was evaluated by considering the liquid fraction graphs, streamlines, and isotherm contours. The numerical model was first verified compared with existed experimental data from the literature. The outcomes re
... Show MoreSimulation of free convection heat transfer in a square enclosure induced by heated thin plate is represented numerically. All the enclosure walls have constant temperature lower than the plate’s temperature. The flow is assumed to be two-dimensional. The discretized equations were solved stream function, vorticity, and energy equations by finite difference method using explicit technique and Successive Over- Relaxation method. The study was performed for different values of Rayleigh number ranging from 103 to 105 for different angle position of heated thin plate(0°, 45°, 90°). Air was chosen as a working fluid (Pr = 0.71). Aspect ratio of center of plate to the parallel left wall A2
... Show MoreKinetics study on the phenol oxidation by catalytic wet air oxidation (CWAO) using CuO.NiO/Al2O3 as heterogeneous catalyst is presented. 4 g/l phenol solution of pH 7.3 was oxidized in a trickle bed reactor with gas flow rate of 80% stochiometric excess (S.E).. In order to verify the proposed kinetics, a series of CWAO experimental tests were done at two temperatures (140 and 160° C), oxygen partial pressures (9 and 12 bar), and weight hourly space velocity (WHSV) (1, 1.5, 2, 2.5, and 3 h-1). According to Power Law, the reaction orders are found to be approximately 1 and 0.5 with respect to phenol concentration and oxygen solubility, respectively. These values favorably compare with those cited in the literature for intrinsic kinetics,
... Show MoreBackground:Periodontal diseases are infectious diseases in which periodontalpathogens trigger chronic inflammatory and immune responses. Interleukine-6 is a multifunctional cytokine playing a central role in inflammation and tissue injury.The aim of the study IS to determine the level of Interleukin-6(IL-6) in saliva of patients with chronic periodontitis compared to healthy subjects. Materials and Methods:The total subjects of the present study is 60, divided into 3 groups; 20 patients with chronic periodontitis with pocket depth(PD ≥4 mm)(group I), 20 patients with pocket depth(PD <4 mm) with clinical attachment loss (group II), and 20 healthy controls with pocket probing depth (PPD ≤ 3 mm) without clinical attachment loss (g
... Show MoreThis study deals with the subject of violence, but from another perspective, it has not been emphasized in contemporary studies of violence in Arabic and raqi universities, which is the structural or institutional aspect of violence. Traditional studies have focused their analysis of violence on the direct side the violence, The other side of the violence is the hidden violence, which is characterized by a lack of clarity of the underlying factors and its effects are not arises, which makes it the most serious violence, which requires a deep research into the social, political, economic, cultural and psychological structure of society (individuals and institutions). This study was based on the theory of the Norwegian scientist (J
... Show MoreSoil is considered one of the main factors of subsidence phenomena which
became continually happen in Baghdad (Ghazalia, Ameria, and Hay al-Amyl)
causing bad effects as shortage of drinking water, traffic jam and formation
swamps.
This thesis depends on soil study to a depth 15 meters, due to its
importance in subsidence. This done through specifying its chemical physical
properties.
Soil within Iraq climate, in case of water stopping for any reason it contract
and shrink away especially when it exposed to high pressure these factors
finally caused subsidence. In case of leakage underground water or that of
damaged water pipes this will contribute to chemical reactions which damage soil
structure and incr
The corrosion behavior of Titanium in a simulated saliva solution was improved by Nanotubular Oxide via electrochemical anodizing treatment using three electrodes cell potentiostat at 37°C. The anodization treatment was achieved in a non-aqueous electrolyte with the following composition: 200mL ethylene glycol containing 0.6g NH4F and 10 ml of deionized water and using different applied directed voltage at 10°C and constant time of anodizing (15 min.). The anodized titanium layer was examined using SEM, and AFM technique.
The results showed that increasing applied voltage resulted in formation titanium oxide nanotubes with higher corrosion resistance
In this study, ultraviolet (UV), ozone techniques with hydrogen peroxide oxidant were used to treat the wastewater which is produced from South Baghdad Power Station using lab-scale system. From UV-H2O2 experiments, it was shown that the optimum exposure time was 80 min. At this time, the highest removal percentages of oil, COD, and TOC were 84.69 %, 56.33 % and 50 % respectively. Effect of pH on the contaminants removing was studied in the range of (2-12). The best oil, COD, and TOC removal percentages (69.38 %, 70 % and 52 %) using H2O2/UV were at pH=12. H2O2/ozone experiments exhibited better performance compared to
... Show MoreKE Sharquie, KI Al-Hamdi, AA Noaimi, AA Al-Mohammadi, J Clin Exp Invest www. clinexpinvest. org Vol, 2011 - Cited by 1