Reducing the drag force has become one of the most important concerns in the automotive industry. This study concentrated on reducing drag through use of some external modifications of passive flow control, such as vortex generators, rear under body diffuser slices and a rear wing spoiler. The study was performed at inlet velocity (V=10,20,30,40 m/s) which correspond to an incompressible car model length Reynolds numbers (Re=2.62×105, 5.23×105, 7.85×105 and 10.46×105), respectively and we studied their effect on the drag force. We also present a theoretical study finite volume method (FVM) of solving Reynolds-averaged Navier-tokes equations (RANS) using a realizable k–epsilon (k-ε) turbulence model, conducted on a car, model KIA Pride, which is popular in Iraq and Iran. All computational analysis and modifications were carried out using the ANSYS Fluent 19 computational fluid dynamics (CFD) software and SOLIDWORKS 2018 modeller. The drag coefficient of the analysed car was found to be 0.34 and the results show that the drag can be reduced up to1.73% using vortex generators, up to 3.05% using a rear wing spoiler and up to 2.47% using rear under-body diffuser slices modifications, whereas it may be reduced up to 3.8% using all previous modifications together.
Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreThe rise in the general level of prices in Iraq makes the local commodity less able to compete with other commodities, which leads to an increase in the amount of imports and a decrease in the amount of exports, since it raises demand for foreign currencies while decreasing demand for the local currency, which leads to a decrease in the exchange rate of the local currency in exchange for an increase in the exchange rate of currencies. This is one of the most important factors affecting the determination of the exchange rate and its fluctuations. This research deals with the currency of the European Euro and its impact against the Iraqi dinar. To make an accurate prediction for any process, modern methods can be used through which
... Show MoreA digital elevation model (DEM) is a digital representation of ground surface topography or terrain. It can be represented as a raster (a grid of squares) and it is commonly estimated by utilizing remote sensing techniques, or from land surveying. In this research a 3D building of Baghdad university campus have been performed using DEM, where the easting, northing, and elevation of 400 locations have been obtained by field survey using global positioning system (GPS). The image of the investigated area has been extracted from QuickBird satellite sensor (with spatial resolution of 0.6 m). This image has been geo-referenced by selecting ground control points of the GPS. The rectification is running, using 1st order polynomial transformation.
... Show MoreIn unpredicted industrial environment, being able to adapt quickly and effectively to the changing is key in gaining a competitive advantage in the global market. Agile manufacturing evolves new ways of running factories to react quickly and effectively to changing markets, driven by customized requirement. Agility in manufacturing can be successfully achieved via integration of information system, people, technologies, and business processes. This article presents the conceptual model of agility in three dimensions named: driving factor, enabling technologies and evaluation of agility in manufacturing system. The conceptual model was developed based on a review of the literature. Then, the paper demonstrates the agility
... Show MoreThis paper proposes and studies an ecotoxicant system with Lotka-Volterra functional response for predation including prey protective region. The equilibrium points and the stability of this model have been investigated analytically both locally and globally. Finally, numerical simulations and graphical representations have been utilized to support our analytical findings
In this paper, a discretization of a three-dimensional fractional-order prey-predator model has been investigated with Holling type III functional response. All its fixed points are determined; also, their local stability is investigated. We extend the discretized system to an optimal control problem to get the optimal harvesting amount. For this, the discrete-time Pontryagin’s maximum principle is used. Finally, numerical simulation results are given to confirm the theoretical outputs as well as to solve the optimality problem.
A newly developed FIA-merging zones spectrophotometric system, the method is rapid, accurate and sensitive for metformin hydrochloride determination through the oxidation of 1- naphthol by sodium hypochlorite and coupling with metformin.HCl in the presence of sodium hydroxide to form a blue soluble ion pair and this product was determined using homemade CFIA-Merging zones techniques , at 580 nm. Data treatment shows that linear range is (0.5-35) µg/ ml. The optimization conditions for various chemical and physical conditions of [MTF- NaOCl-α-naphthol-NaOH] system were investigated. The LOD was 0.01µg / ml and LOQ 0.1µg/ml from the lowest concentration of the calibration graph with r2% 99.18 and RSD% did
... Show MoreShallow foundations are usually used for structures with light to moderate loads where the soil underneath can carry them. In some cases, soil strength and/or other properties are not adequate and require improvement using one of the ground improvement techniques. Stone column is one of the common improvement techniques in which a column of stone is installed vertically in clayey soils. Stone columns are usually used to increase soil strength and to accelerate soil consolidation by acting as vertical drains. Many researches have been done to estimate the behavior of the improved soil. However, none of them considered the effect of stone column geometry on the behavior of the circular footing. In this research, finite ele
... Show More