Natural fractures provide an important reservoir space and migration channels for oil and gas reservoirs and control the reservoir potential. Therefore, it is essential to understand the methods for identifying accurate reservoir permeability and characterizing reservoir fractures. In particular, using conventional measurements to identify permeability and characterize fractures is very expensive. While using conventional logging data is very challenging, and an efficient characterization correlation method is urgently needed. In this paper, we have evaluated reservoir potential based on the sensitivity of sonic scanner tools to fluid mobility, maximum stress direction, and fractures presence. This tool provides a continuous estimation of these important parameters along the studied formation using a real field data. Dispersion behavior based on the difference between the maximum and minimum energy of the studied formation is used to detect reservoir heterogeneity and anisotropy. Dispersion analysis shows the presence of inhomogeneous anisotropy in several intervals along the studied formation. The methodology used in this paper provides an accurate estimation of reservoir permeability varies from 1 to 100 md. Also, the application of this technique shows an accepted percent error of reservoir permeability estimation reaches to 7% when compared to laboratory core measurements. The average direction of the maximum horizontal stress in the studied formation is detected to be NW10 to N16E. The study results prove that the proposed technique is effective for the identification of important reservoir properties in the oil industry.
Gaslift reactors are employed in several bioapplications due to their characteristics of cost-effectiveness and high efficiency. However, the nutrient and thermal gradient is one of the obstacles that stand in the way of its widespread use in biological applications. The diagnosis, analysis, and tracking of fluid paths in external draft tube gaslift bioreactor-type are the main topics of the current study. Several parameters were considered to assess the mixing efficiency such as downcomer-to-rizer diameter ratio (Ded/Dr), the position of the diffuser to the height of bioreactor ratio (Pd/Lr), and gas bubble size (Db). The multiple regression of liquid velocity indicates the optimal setting: Ded/Dr is (0.5), Pd/Lr is (0.02), and Db
... Show MoreThe current research tries to identify the employment of the digital technology in the formation of the theatrical show space. The researcher started with the significant importance of the digital technology and its workings in the formation of the contemporary theatrical show being a modern, artistic, aesthetic, intellectual and technological means to convey the topic in an integrated manner, as well as its close connection with the creative directive vision and the creative designing vision. It provides a variety of models of numerous implications in terms of transmission and advancement of the relationships represented by clarifying the scenography and dramatic conflict forms according to the numerous motivations of the directo
... Show MoreCharacterization of the heterogonous reservoir is complex representation and evaluation of petrophysical properties and application of the relationships between porosity-permeability within the framework of hydraulic flow units is used to estimate permeability in un-cored wells. Techniques of flow unit or hydraulic flow unit (HFU) divided the reservoir into zones laterally and vertically which can be managed and control fluid flow within flow unit and considerably is entirely different with other flow units through reservoir. Each flow unit can be distinguished by applying the relationships of flow zone indicator (FZI) method. Supporting the relationship between porosity and permeability by using flow zone indictor is ca
... Show MoreA 3D geological model is an essential step to reveal reservoir heterogeneity and reservoir properties distribution. In the present study, a three-dimensional geological model for the Mishrif reservoir was built based on data obtained from seven wells and core data. The methodology includes building a 3D grid and populating it with petrophysical properties such as (facies, porosity, water saturation, and net to gross ratio). The structural model was built based on a base contour map obtained from 2D seismic interpretation along with well tops from seven wells. A simple grid method was used to build the structural framework with 234x278x91 grid cells in the X, Y, and Z directions, respectively, with lengths equal to 150 meters. The to
... Show MoreMauddud Formation (Albian stage-the Early Cretaceous) is an important oil reservoir in Ratawi field of southern Iraq. Four wells, R T-2, R T-3, R T-6, and R T-7, located 70 km northwest of Basra, were selected to study microfacies properties and petrophysical associations with the probability of oil production. Seventy-seven core samples are collected, and thin sections for petrographic analysis. The self-potential, Gamma-ray, resistivity, and porosity logs are used to determine the top and bottom of the Mauddud Formation. Water saturation of the invaded and uninvaded zones, shale volume, and porosity were calculated. The study area results showed that the quantity of shale is less than 15% for most of the wells, and the dominant po
... Show MoreBACKGROUND: Vascular tumors are a heterogeneous group of diseases with biological behavior ranging from a hamartomatous growth to frank malignant. The pathophysiology of lymphangioma, vascular malformation and hemangioma is interconnected, blood vessels known to be the site of origin of hamartomas, venous malformations and some neoplasms as benign, tumor-like growth of vessels (hemangiomas). Angiogenesis is the process of formation of new blood vessels from an existing structure.
Aims of study Assessment of angiogenic potential in benign vascular lesions (hemangioma, lymphangioma and lobular capillary hemangioma) of head and neck region.
Materials and Methods: Twenty-two formalin-fixed paraffin-embedd
... Show MoreHuman health can be negatively impacted by exposure to loud noise, which can harm the auditory system. Traffic noise is the leading cause of noise pollution. This paper studies the problem of noise pollution on the roads in Baghdad, Iraq. Due to the increase in vehicle numbers and road network modifications in Baghdad, noise levels became a serious topic to be studied. The aim of the paper was thus to study traffic noise levels and the effect of the traffic stream on noise levels and to formulate a prediction model that identified the guidelines used for designing or developing future roads in the city. Then, the noise levels were measured based on five variables: the functional classification of roads, traffic flow, vehicle speed,
... Show More