Projects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postponement of delay of interim payments is at the forefront of delay factors caused by the employer’s decision. Even the least one is to leave the job site caused by the contractor’s second part of the contract, the repeated unjustified stopping of the work at the site, without permission or notice from the client’s representatives. The developed model was applied to about 97 projects and used as a prediction model. The decision tree model shows higher accuracy in the prediction.
This study aimed at investigating the effect of using computer in
Efficiency of Training Programme of Science Teachers in Ajloun District in
Jordan.
1- What is the effect of using computer in program for the two groups
2- ( the experimental and control group ) .
3- Are there any statistics different in the effect of using computer
program for the two groups ?
4- Are there any statistics (comparison ) or different of the effect of the
effect of using computer program refer to the sex (male or female )?
The community of the study consisted of all the science student in
educational directorate of Ajloun district for the academic year 2009 –
2010, they are (120) ( male and female) . The sample of the study<
In Iraq, more than 1031 school projects have been halted due to disputes and claims resulting from financial, contractual, or other issues. This research aims to identify, prioritize, and allocate the most critical risk factors that threaten these projects’ success for the duration (2017-2022). Based on a multi-step methodology developed through systematic literature reviews, realistic case studies, and semi-structured interviews, 47 risk factors were identified. Based on 153 verified responses, the survey reveals that the top-ranked risk factors are corruption and bribery, delaying the payments of the financial dues to the contractors or sub-contractors, absence of risk management strategy, multiple change orders due
... Show MoreKnowledge of the mineralogical composition of a petroleum reservoir's formation is crucial for the petrophysical evaluation of the reservoir. The Mishrif formation, which is prevalent in the Middle East, is renowned for its mineralogical complexity. Multi-mineral inversion, which combines multiple logs and inversions for multiple minerals at once, can make it easier to figure out what minerals are in the Mishrif Formation. This method could help identify minerals better and give more information about the minerals that make up the formation. In this study, an error model is used to find a link between the measurements of the tools and the petrophysical parameters. An error minimization procedure is subsequently applied to determine
... Show MoreObjective : The study was carried out to construct an initial assessment documentation tool for nursing
recording system in Coronary Care Unit.
Methodology : A descriptive, purposive sample of (65) nurses was selected from CCU of main
teaching hospitals (Al Karama, Al Kindy, Al Kadimia, Al Yarmmok, Baghdad teaching hospital, Ibn
Al Naffis hospital) and Ibn-Al betar hospital in Baghdad city from the 15th of April 2004 to the 15th of
April 2006.
The instrument was constructed and comprised of two sections: section one included the
nurses' demographic characteristic; section two was the initial assessment documentation tool that
contained (2) parts including: General information form and the initial assessment form.
This study examines the causes of time delays and cost overruns in a selection of thirty post-disaster reconstruction projects in Iraq. Although delay factors have been studied in many countries and contexts, little data exists from countries under the conditions characterizing Iraq during the last 10-15 years. A case study approach was used, with thirty construction projects of different types and sizes selected from the Baghdad region. Project data was gathered from a survey which was used to build statistical relationships between time and cost delay ratios and delay factors in post disaster projects. The most important delay factors identified were contractor failure, redesigning of designs/plans and change orders, security is
... Show MoreEngineering equipment is essential part in the construction project and usually manufactured with long lead times, large costs and special engineering requirements. Construction manager targets that equipment to be delivered in the site need date with the right quantity, appropriate cost and required quality, and this entails an efficient supplier can satisfy these targets. Selection of engineering equipment supplier is a crucial managerial process .it requires evaluation of multiple suppliers according to multiple criteria. This process is usually performed manually and based on just limited evaluation criteria, so better alternatives may be neglected. Three stages of survey comprised number of public a
... Show MoreBackground/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the
... Show MoreWhenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas
... Show MorePrediction of accurate values of residual entropy (SR) is necessary step for the
calculation of the entropy. In this paper, different equations of state were tested for the
available 2791 experimental data points of 20 pure superheated vapor compounds (14
pure nonpolar compounds + 6 pure polar compounds). The Average Absolute
Deviation (AAD) for SR of 2791 experimental data points of the all 20 pure
compounds (nonpolar and polar) when using equations of Lee-Kesler, Peng-
Robinson, Virial truncated to second and to third terms, and Soave-Redlich-Kwong
were 4.0591, 4.5849, 4.9686, 5.0350, and 4.3084 J/mol.K respectively. It was found
from these results that the Lee-Kesler equation was the best (more accurate) one