Projects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postponement of delay of interim payments is at the forefront of delay factors caused by the employer’s decision. Even the least one is to leave the job site caused by the contractor’s second part of the contract, the repeated unjustified stopping of the work at the site, without permission or notice from the client’s representatives. The developed model was applied to about 97 projects and used as a prediction model. The decision tree model shows higher accuracy in the prediction.
In this review paper, several studies and researches were surveyed for assisting future researchers to identify available techniques in the field of classification of Synthetic Aperture Radar (SAR) images. SAR images are becoming increasingly important in a variety of remote sensing applications due to the ability of SAR sensors to operate in all types of weather conditions, including day and night remote sensing for long ranges and coverage areas. Its properties of vast planning, search, rescue, mine detection, and target identification make it very attractive for surveillance and observation missions of Earth resources. With the increasing popularity and availability of these images, the need for machines has emerged to enhance t
... Show MoreThe research aims to know the question asking skills in terms of levels, conditions, classification, and types. The research limited to the literature that dealt with the importance of questioning for students and teachers. The most important term used in the research is the skill (Ryan defined it as "the ability to perform with great efficiency, accuracy, and ease). The results of the research are as follows: 1. the questions asked by the schoolteacher within the assessment of students' learning. 2. Teachers should focus on the lower levels of learning (remembering, understanding and comprehension) and then evaluating students at the higher levels (synthesis and evaluation). 3. Teacher with good knowledge can skillfully use the question
... Show MoreIn this paper, a new hybridization of supervised principal component analysis (SPCA) and stochastic gradient descent techniques is proposed, and called as SGD-SPCA, for real large datasets that have a small number of samples in high dimensional space. SGD-SPCA is proposed to become an important tool that can be used to diagnose and treat cancer accurately. When we have large datasets that require many parameters, SGD-SPCA is an excellent method, and it can easily update the parameters when a new observation shows up. Two cancer datasets are used, the first is for Leukemia and the second is for small round blue cell tumors. Also, simulation datasets are used to compare principal component analysis (PCA), SPCA, and SGD-SPCA. The results sh
... Show MorePredicting the maximum temperature is of great importance because it is related to various aspects of life, starting from people’s lives and their comfort, passing through the medical, industrial, agricultural and commercial fields, as well as concerning global warming and what can result from it. Thus, the historical observations of maximum and minimum air temperature, wind speed and relative humidity were analyzed in this work. In Baghdad, the climatic variables were recorded on clear sky days dawn at 0300 GMT for the period between (2005-2020). Using weather station's variables multiple linear regression equation, their correlation coefficients were calculated to predict the daily maximum air temperature for any day during
... Show MoreMeta-heuristic algorithms have been significantly applied in addressing various real-world prediction problem, including in disease prediction. Having a reliable disease prediction model benefits many parties in providing proper preparation for prevention purposes. Hence, the number of cases can be reduced. In this study, a relatively new meta-heuristic algorithm namely Barnacle Mating Optimizer (BMO) is proposed for short term dengue outbreak prediction. The BMO prediction model is realized over real dengue cases data recorded in weekly frequency from Malaysia. In addition, meteorological data sets were also been employed as input. For evaluation purposes, error analysis relative to Mean Absolute Percentage Error (MAPE), Mean Square Err
... Show MoreSupport vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa
... Show MoreLinear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.
In this paper we have been focus for the comparison between three forms for classification data belongs
... Show MoreObjective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.
Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are
... Show More