Projects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postponement of delay of interim payments is at the forefront of delay factors caused by the employer’s decision. Even the least one is to leave the job site caused by the contractor’s second part of the contract, the repeated unjustified stopping of the work at the site, without permission or notice from the client’s representatives. The developed model was applied to about 97 projects and used as a prediction model. The decision tree model shows higher accuracy in the prediction.
In this study, the results of the uranium concentrations and specific activity in 10 rice samples are described using a solid-state track detector (CR-39). Samples were collected from various local Iraqi markets with different origins (Iraq, India, America, and Thailand). Our findings found that the results of uranium concentration in all studied samples are ranging from (0.55 ± 0.28 to 1.74 ± 0.31) ppm with a weighted average of (1.24 ± 0.99) ppm. Also, results demonstrate that the specific activity values of the studied samples swing between values of (6.88 ± 3.52 and 21.49 ± 3.85) Bq/Kg. The obtained results of the studied rice samples are indicated that it is less than the acceptable limit of those studies established by ma
... Show MoreIn the present study ten samples of bottled water from Baghdad conservative were taken to measure the concentration of radon gas by using nuclear track detector LR-115.The result obtained are varying from(0.033)to(0.007)pCi.l-1and these values are very low than the allowed limits (5) pCi.l-1, and specific activity from bottled water has been calculated which was vary from (0.00027)to(0.00126) Bq.l-1 and these values are very low than allowed limits (0.0123) Bq.l-1 that mean the bottled water was treated with good treatment to decrease the side effect of radon
High frequency (HF) communications have an important role in long distances wireless communications. This frequency band is more important than VHF and UHF, as HF frequencies can cut longer distance with a single hopping. It has a low operation cost because it offers over-the-horizon communications without repeaters, therefore it can be used as a backup for satellite communications in emergency conditions. One of the main problems in HF communications is the prediction of the propagation direction and the frequency of optimum transmission (FOT) that must be used at a certain time. This paper introduces a new technique based on Oblique Ionosonde Station (OIS) to overcome this problem with a low cost and an easier way. This technique uses the
... Show MoreWireless channels are typically much more noisy than wired links and subjected to fading due to multipath propagation which result in ISI and hence high error rate. Adaptive modulation is a powerful technique to improve the tradeoff between spectral efficiency and Bit Error Rate (BER). In order to adjust the transmission rate, channel state information (CSI) is required at the transmitter side.
In this paper the performance enhancement of using linear prediction along with channel estimation to track the channel variations and adaptive modulation were examined. The simulation results shows that the channel estimation is sufficient for low Doppler frequency shifts (<30 Hz), while channel prediction is much more suited at
... Show MoreAttention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w
... Show MorePredicting vertical stress was indeed useful for controlling geomechanical issues since it allowed for the computation of pore pressure for the formation and the classification of fault regimes. This study provides an in-depth observation of vertical stress prediction utilizing numerous approaches using the Techlog 2015 software. Gardner's method results in incorrect vertical stress values with a problem that this method doesn't start from the surface and instead relies only on sound log data. Whereas the Amoco, Wendt non-acoustic, Traugott, average technique simply needed density log as input and used a straight line as the observed density, this was incorrect for vertical computing stress. The results of these methods
... Show MoreThe study aims to demonstrate the significance of metaverse technology across various disciplines, academic degrees, scientific fields, and academic titles. It also aims to assess the level of knowledge and understanding of university teachers (research sample) regarding metaverse technology. Hence, the descriptive research methodology was based on the method of statistical survey in the sample. It involved a set of organized scientific steps to deduce data from the reality of the statistical sample and its nature in order to achieve the objectives of the study. In this study, a questionnaire was used as a tool to collect data from a random sample of approximately 121 teachers and instructors from the University of Baghdad. This app
... Show MoreThe drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the