Preferred Language
Articles
/
SYYjs4YBIXToZYALWrL9
Prediction of the Delay in the Portfolio Construction Using Naïve Bayesian Classification Algorithms
...Show More Authors
Abstract<p>Projects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postponement of delay of interim payments is at the forefront of delay factors caused by the employer’s decision. Even the least one is to leave the job site caused by the contractor’s second part of the contract, the repeated unjustified stopping of the work at the site, without permission or notice from the client’s representatives. The developed model was applied to about 97 projects and used as a prediction model. The decision tree model shows higher accuracy in the prediction.</p>
Scopus Clarivate Crossref
Publication Date
Fri Jan 31 2025
Journal Name
Aip Conference Proceedings
Classification of oral cavity cancer using linear discriminant analysis (LDA) and principal component analysis (PCA)
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Journal Of Engineering Science And Technology (jestec)
Water Quality Assessment And Total Dissolved Solids Prediction For Tigris River In Baghdad City Using Mathematical Models
...Show More Authors

Total dissolved solids are at the top of the parameters list of water quality that requires investigations for planning and management, especially for irrigation and drinking purposes. If the quality of water is sufficiently predictable, then appropriate management is possible. In the current study, Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) models were used as indicators of water quality and for the prediction of Total Dissolved Solids (TDS) along the Tigris River, in Baghdad city. To build these models five water parameters were selected from the intakes of four water treatment plants on the Tigris River, for the period between 2013 and 2017. The selected water parameters were Total Dissolved Solids (TDS

... Show More
Publication Date
Wed Dec 18 2019
Journal Name
Baghdad Science Journal
A Modified Approach by Using Prediction to Build a Best Threshold in ARX Model with Practical Application
...Show More Authors

The proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.

In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Tue Aug 01 2017
Journal Name
Journal Of Engineering
Rigid trunk sewer deterioration prediction models using multiple discriminant and neural network models in Baghdad city, Iraq
...Show More Authors

The deterioration of buried sewers during their lifetime can be affected by several factors leading to bad performance and can damage the infrastructure similar to other engineering structures. The Hydraulic deterioration of the buried sewers caused by sewer blockages while the structural deterioration caused by sewer collapses due to sewer specifications and the surrounding soil characteristics and the groundwater level. The main objective of this research is to develop deterioration models, which are used to predict changes in sewer condition that can provide assessment tools for determining the serviceability of sewer networks in Baghdad city. Two deterioration models were developed and tested using statistical software SPSS, the

... Show More
Publication Date
Mon Jul 31 2017
Journal Name
Journal Of Engineering
Rigid Trunk Sewer Deterioration Prediction Models using Multiple Discriminant and Neural Network Models in Baghdad City, Iraq
...Show More Authors

View Publication Preview PDF
Publication Date
Thu Feb 28 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Evaluation of the Construction, Build, Operate and Transfer (B.O.T): Applied Research in Southern Cement State Company
...Show More Authors

   Form of investment in infrastructure important factor to drive economic growth in any country, with the dwindling ability of governments to provide the necessary funds for such investments, emerged as a rising trend for private sector involvement in public projects and infrastructure, and one of these trends is the build-operate-transfer system (BOT), which commonly used in various developed and developing countries as one of the tools used in the implementation of these investments, as the private sector under this system design, finance, build and operate the project, and are re-administration of the state after a certain period under a contractual agreement between the parties of the contract. As this system provides majo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Mar 01 2022
Journal Name
Process Safety And Environmental Protection
Safety and health management response to COVID-19 in the construction industry: A perspective of fieldworkers
...Show More Authors

View Publication
Scopus (54)
Crossref (52)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2017
Journal Name
International Journal Of Advanced Computer Science And Applications
Fast Hybrid String Matching Algorithm based on the Quick-Skip and Tuned Boyer-Moore Algorithms
...Show More Authors

View Publication
Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data
...Show More Authors

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
View Publication
Scopus (14)
Crossref (6)
Scopus Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Shift
Construction Safety Personnel Qualifications: The Impact of Education, Experience, and Certificate Programs
...Show More Authors