The main aim of this study is to assess the performance and residual strength of post-fire non-prismatic reinforced concrete beams (NPRC) with and without openings. To do this, nine beams were cast and divided into three major groupings. These groups were classified based on the degrees of heating exposure temperature chosen (ambient, 400, and 700°C), with each group containing three non-prismatic beams (solid, 8 trapezoidal openings, and 8 circular openings). Experimentally, given the same beam geometry, increasing burning temperature caused degradation in NPRC beams, which was reflected in increased mid-span deflection throughout the fire exposure period and also residual deflection after cooling. But on the other hand, the issue with existing openings was exacerbated. The burned NPRC beams were then gradually cooled down by leaving them at ambient temperature in the laboratory, and the beams were loaded until failure to examine the effect of burning temperature degree on the residual ultimate load-carrying capacity of each beam by comparing them to unburned reference beams. It was found, increasing the exposure temperature leads to a reduction in ultimate strength about (5.7 and 10.84%) for solid NPRC beams exposed to 400 and 700°C, respectively related to unburned one, (21.13 -32.8) % for NPRC beams with eight trapezoidal openings, and (10.5 - 12.8) % for those having 8 circular openings. At higher loading stage the longitudinal compressive strain of Group ambient in mid-span of solid beams reach 2700 με, while the others with openings exhibit divergent strain higher than that, it’s about 3300 με meanwhile, the lower chord main reinforcements have been pass beyond yielding stress. Exposure to high temperatures reduces rafters’ stiffness causing a reduction in load carrying capacity, companion with premature failure consequently reduce the strain at the ultimate stage.
Nuclear emission rates for nucleon-induced reactions are theoretically calculated based on the one-component exciton model that uses state density with non-Equidistance Spacing Model (non-ESM). Fair comparison is made from different state density values that assumed various degrees of approximation formulae, beside the zeroth-order formula corresponding to the ESM. Calculations were made for 96Mo nucleus subjected to (N,N) reaction at Emax=50 MeV. The results showed that the non-ESM treatment for the state density will significantly improve the emission rates calculated for various exciton configurations. Three terms might suffice a proper calculation, but the results kept changing even for ten terms. However, five terms is found to give
... Show MoreA legal discourse in the Qur’an and Sunnah is almost devoid of the use of one of the general formulas, and due to its frequent rotation in the tongue of the legislator, the formulas may overlap their members in apparently contradictory provisions, which makes the individual from the general members appear to the beholder to be covered by two contradictory provisions, and this research came to present what might happen to him The legal text interpreter of weighting between the two opposing texts is the strength of the generality that is established by the generality formula, so the two strongest formulas in the inclusion of its members outweigh the weaker of them and precede them, and the research decided that the formulas vary
... Show MoreThe parameter and system reliability in stress-strength model are estimated in this paper when the system contains several parallel components that have strengths subjects to common stress in case when the stress and strengths follow Generalized Inverse Rayleigh distribution by using different Bayesian estimation methods. Monte Carlo simulation introduced to compare among the proposal methods based on the Mean squared Error criteria.
Purpose: To evaluate the effect of different surface treatments on shear bond strength between dentin and IPS e.max lithium disilicate glass-ceramic. Materials and Methods: Eighteen extracted third molars were embeded in epoxy resin. The tooth was sectioned vertically in mesiodistal direction using a low speed hard tissue microtome. The buccal and lingual surfaces of each section were ground flat using 600 grit Silicone carbide paper. Eighteen ceramic discs consisted of lithium disilicate glass-ceramic were prepared with a diameter of 4.7mm and height of 2.2mm. The discs were divided in two groups (n=10): (1) IPS e.max treated with hydrofluoric acid and Monobond Plus (MBP) and (2) IPS e.max treated with Monobond Etch &Prime (MBEP). The toot
... Show MoreBackground: Esthetic correction represents one of the clinical conditions that required the use of laminate veneers in premolars region. Aim of the study: The purpose of this study was to evaluate the fracture strength of the laminate veneers in maxillary first premolars, fabricated from either composite (direct and indirect techniques) or ceramic CAD/CAM blocks. Materials and Methods: Fifty sound human maxillary premolar teeth were used in this in vitro study. Teeth were divided randomly into one control group and four experimental groups of ten teeth each; Group A: Restored with direct composite veneer (Filtek Z250 XT), Group B: Restored with indirect composite veneers (Filtek Z250 XT), Group C: Restored with lithium disilicate ceramic CA
... Show MoreThe study of biomechanical indicators in the arc of the run and the upgrading stage is one of the important variables that affect the nature of the upgrading and thus affect the result of the race due to the importance of these stages and the consequent variables during the last steps. That’s why, the jump-trainings based on assistant means or body weight positively affect the step-time for each of the three steps in the acceleration arc. As well as, it focuses on the momentary strength of each step at this stage. It also significantly affects the speed of motor performance to suit the activity in which the runner needs to perform perfect steps with high flow in order to convert the horizontal speed to a vertical one. This is achieved thr
... Show MoreDissolution of gypsum rock in water is significant, which may result in hydrocarbon reservoir formation and evaporate deposits. However, the complexity of the gypsum dissolution process is still of interest because of its uncleanness that requires more critical analysis. The objectives of this experimental study are emphasis on the dissolution characteristics of gypsum rock under room temperature and by various types of water; namely: deionized, tap, fresh, acidic, well, and normal rainwatre. In addition, the influences of dissolution on gypsum rock's mechanical and physical characteristics. Gypsum rock was obtained from Agjalar area, in the southwest of Sulaymaniyah city, Northern Iraq. Experimental results show that we
... Show More