Purpose: To evaluate the effect of different surface treatments on shear bond strength between dentin and IPS e.max lithium disilicate glass-ceramic. Materials and Methods: Eighteen extracted third molars were embeded in epoxy resin. The tooth was sectioned vertically in mesiodistal direction using a low speed hard tissue microtome. The buccal and lingual surfaces of each section were ground flat using 600 grit Silicone carbide paper. Eighteen ceramic discs consisted of lithium disilicate glass-ceramic were prepared with a diameter of 4.7mm and height of 2.2mm. The discs were divided in two groups (n=10): (1) IPS e.max treated with hydrofluoric acid and Monobond Plus (MBP) and (2) IPS e.max treated with Monobond Etch &Prime (MBEP). The tooth was cemented with Multilink Automix and stored for 24hours at room temperature before thermocycling and subsequently loaded to failure in Universal Testing Machine. Failure mode were recorded for each specimen. Result: Bond strength analysis and t-test analysis MBEP demonstrated the higher shear bond strength (SBS). MBP and MBEP showed no statistically significant difference were found between them. One-way ANOVA and t-test was used to determine differences in bond strength within and between the groups. Cohesive failure in resin cement was predominant with higher results while adhesive and mixed with lower and equal. Conclusion: Surface treatment with Monobond Etch and Prime has a favorable effect on SBS between dentin and lithium disilicate glass-ceramic with resin cement compared with Monobond Plus.
This study aims to evaluate the influence of the air abrasion of dentin on the shear bond strength of lithium disilicate using three different types of luting cements. Sixty cylindrical specimens were milled from lithium disilicate CAD/CAM blocks (IPSe.max CAD). Sixty sound human maxillary premolar teeth were decoronated to the level of peripheral dentin, then randomly divided into three groups according to the type of luting cement used for the cementation of the lithium disilicate specimens (n = 20); Group A: Glass ionomer cement (Riva Self- Cure); Group B: Adhesive resin cement (Rely X Ultimate); Group C: Self-adhesive resin cement (Rely X U200). Each group was then further subdivided into two subgroups (n=10); Subgroups AI, BI, and CI,
... Show MoreBackground: The aim of the study was to investigate the effect of surface treatments of zirconia (grinding and sandblast with 50μm, 100 μm) on shear bond strength between zirconia core and veneering ceramic. Material and methods: Twenty-eight presintered Y-TZP ceramic specimens (IPS e.max ZirCAD, Ivoclar vivadent) were fabricated and sintered according to manufacturer’s instructions. The core specimens were divided randomly in to 4 groups, group 1: no surface treatment, group2: zirconia specimens were ground with silicon carbide paper up to1200 grit under water cooling, group3: zirconia specimens were ground and sandblast with 100 μm alumina, group 4: zirconia specimens were ground and sandblast with 50 μm alumina. Surfa
... Show MoreBackground: the aim of this study was to evaluate the effect of different surface acids treatments (37%phospjoric acid, 5%hydrofluoric acid, 1.23 acidulated phosphate fluoride) of feldspathic ceramic VITA 3D MASTER , and the effect of thermocycling on shear bond strength using a ceramic repair kit (ivoclar/vivadent). Material and Methods: sixty Nickel-Chromium metal base plates were prepared(9mm diameter,3mm depth) using lost wax technique, 2mm thick layer of ceramic(VITA 3D MASTER) fused to metal plates, all specimens were embedded in acrylic resin blocks except their examined surfaces and divided into 3 main groups 20 specimens each, Grp A: treatment with 37%phosphoric acid for 2 mins, Grp B: etching with 5% hydrofluoric acid for 2mins,
... Show MoreBackground: Separation and deboning of artificial teeth from denture bases present a major clinical and labortory problem which affect both the patient and the dentist. The optimal bond strength of artificial teeth with denture base reinforced with nanofillers and flexible denture bases and the effect of thermo cycling should be evaluated. This study was conducted to evaluate and compare the shear bond strength of artificial teeth (acrylic and porcelain) with denture bases reinforced by 5% Zirconium oxide nanofillers and flexible bases under the effect of different surface treatments and thermo cycling and comparing the results with conventional water bath cured denture bases. Material and methods: Two types of artificial teeth; acrylic and
... Show MoreBackground: One of the major problems in endodontics is micro-leakage of root canal fillings which might contribute to the failure of endodontic treatment. To avoid this problem, a variety of sealers have been tested. The objective of this, in vitro, study was to evaluate the shear bond strength of four resin based sealers (AH plus, silver free AH26, RealSeal SE and Perma Evolution permanent root canal filling material) to dentin. Materials and Methods: Forty non-carious extracted lower premolars were used. The 2mm of the occlusal surfaces of teeth were sectioned, to expose the dentin surface. The exposed dentin surfaces of teeth were washed with 5ml of 2.5% NaOCl solution followed by 5ml of 17 % EDTA then rinsed by deionized water to remov
... Show MoreBackground: Fracture of different types of acrylic denture base is a common problem associated with dental prosthesis. Studies suggested that the repair strength may be improved by several means including surface treatment with chemical agents. The aim of the study was to evaluate the effect of surface treatment with acrybond-bonding agent and monomer on fractured denture base in respect to transverse, tensile and shear bond strength and evaluation of the mode of failure by light microscope. Materials and methods: Two hundred seventy specimens were prepared and divided into 3 groups according to the material used (regular conventional, rapid simplified and high impact) heat cure acrylic. The specimen in each groups were prepared specificall
... Show More
Background: Lack of durability of the bond of the dental adhesive systems to tooth structure is one of the most important problems in tooth colored restorative work. This in vitro study was performed to evaluate the effect of 2% chlorhexidine gluconate(CHX) on dentin bond strength by using total etch adhesive system at twenty-four hours and three months of water storage. Material and methods:A flat dentin surface was prepared for forty sound human maxillary premolar teeth which were acid etched with 36% phosphoric acid gel after being divided randomly into four groups of ten teeth each according to storage time and CHX application, theCHX was applied for 60 seconds before adhesive application for groups I and III which were tested after twe
... Show MoreResin-modified glass ionomer cement tends to shrink due to polymerization of the resin component. Additionally, they are more prone to syneresis and imbibition during the setting process. This