Dental implants can be made of various materials, and amongst them, titanium and titanium alloy were the materials of choice for dental implants for many years because of their biocompatibility. The two alloys have a high level of biocompatibility, a lower modulus of elasticity, and better corrosion resistance than other alloys. Thus, they are frequently utilized in biomedical applications and mostly replace stiff fabrics. The latest advances in a new strontium oxide–cp titanium composite alloy are the main topic of this research. With regard to biomedical applications, additions of strontium oxide were synthesized at three distinct weight percentages (2%, 4%, and 6% by wt%). Powder metallurgy was used to create the alloys, which were then sintered by heating the samples. The effects of adding strontium oxide were analyzed by utilizing measurements of the Brinell hardness, X-ray diffraction, porosity, diametral tensile strength, roughness, and wettability of the finished surfaces. The results show that adding more strontium oxide (gradually increasing the ratio from 2% SrO to a 6% addition) raised the roughness and porosity. However, the microhardness and diametral tensile strength were enhanced with an increase in the volume fraction of strontium oxide particles. In conclusion, the alloy that contained 6 wt% strontium oxide microparticles had reasonably high mechanical properties and might be regarded as suitable for use in dental and medical applications due to its high wettability or, in other words, its low contact angle. The Brinell testing results for the diametral tensile strength, microhardness, and porosity of the generated strontium oxide–cp titanium composite alloy demonstrate its high potential for usage as a biomaterial, particularly in dental applications.
The current research reports the preparation and fabrication of the silver paste conductor which is employed as a soldering material for electro – optical components ohmic interconnections. The prepared paste possesses electrical characteristics identical to the ohmic connectors as its observable from resistance – temperature variation. Moreover, the I – V characteristics obeys Ohm’s law and this dependency was further confirmed by the nearly constant capacitance measurements with voltage and frequency. A noticeable improvement in electrical conductivity, compared to the pure silver paste sample, was noted for samples prepared by mixing predetermined weight ratios of brass and copper. Furthermore, stability of electrical resistan
... Show MoreFH Ghanim, Journal of Global Pharma Technology, 2018
The mixed ligand complexes of Schiff base ligand (Z)-2-(((4-bromo-2-methylphenyl) imino) methyl)-4-methylphenol (L) with some metals ion (II); Mn(1), Co(2), Ni(3), Cu(4), Zn(5) Cd(6) and Hg(7) and 1,10-Phenanthroline (phen) were Synthesis and characterized by the mass and 1HNMR spectrometry (ligand Schiff base), the FTIR, UV-visible and the flame atomic absorption (A.A) spectrum, the C.H.N analysis and the chlorine content, in addition to measuring the magnetic sensitivity of the complexes. All the complexes had octahedral geometry. The bioactivity activity for compounds against; Rhizopodium, Staphylococcus aureus and Escherichia coli, the compounds showed different efficacy towards these microorganisms
The simulation of passively Q-switching is four non – linear first order differential equations. The optimization of passively Q-switching simulation was carried out using the constrained Rosenbrock technique. The maximization option in this technique was utilized to the fourth equation as an objective function; the parameters, γa, γc and β as were dealt with as decision variables. A FORTRAN program was written to determine the optimum values of the decision variables through the simulation of the four coupled equations, for ruby laser Q–switched by Dy +2: CaF2.For different Dy +2:CaF2 molecules number, the values of decision variables was predicted using our written program. The relaxation time of Dy +2: CaF2, used with ruby was
... Show MoreHigh-volume traffic with ultra-heavy axle loads combined with extremely hot weather conditions increases the propagation of rutting in flexible pavement road networks. Several studies suggested using nanomaterials in asphalt modification to delay the deterioration of asphalt pavement. The current work aims to improve the resistance of hot mix asphalt (HMA) to rutting by incorporating Nano Silica (NS) in specific concentrations. NS was blended into asphalt mixtures in concentrations of 2, 4, and 6% by weight of the binder. The behavior of asphalt mixtures subjected to aging was investigated at different stages (short-term and long-term aging). The performance characteristics of the asphalt mixtures were evaluated using the Marshall s
... Show MoreBeta-lactam medications are among the commonly used antibiotics. These drugs kill germs by disrupting cell wall formation. This drug treats bacterial infections in numerous body sections. A new, quick, high-performance liquid chromatography approach has been developed and verified by the FDA and EMA for the simultaneous estimation of drugs in their medicinal and pure forms. This study deals with the determination of beta-lactam drugs (Amoxicillin, Ampicillin, Cephalexin, Cefotaxime, Cefoxitin, Cefamandole, Cephalothin, Piperacillin, Penicillin, Oxacillin, Cloxacillin, Nafcillin, Carbenicillin, Mezlocillin, Dicloxacillin) by a Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) technique based on an UV detector using a
... Show MoreThis study is a numerical investigation of the performance of reinforced concrete (RC) columns after fire exposure. This study aims to investigate the effect of introducing lateral ties and using the RC jacket on improving post-fire behavior of these columns, the effect of the duration of the fire on ultimate load of columns. The analysis was performed through ABAQUS, a 3D – non-linear finite element program. 4 m tall lengthening square RC column with a cross- section of 0.4 m × 0.4 m was used as a test specimen. The RC column was reinforced by 4Ø28 mm longitudinal bars bonded by steel tie bars of Ø10 mm spaced at 400 mm. The firing temperature was increased to 60
Environmentally friendly copper oxide nanoparticles (CuO NPs) were prepared with a green synthesis route via Anchusa strigosa L. Flowers extract. These nanoparticles were further characterized by FTIR, XRD and SEM techniques. Removing of Gongo red from water was applied successfully by using synthesized CuO NPs which used as an adsorbent material. It was validated that the CuO NPs eliminate Congo red by means of adsorption, and the best efficiency of adsorption was gained at pH (3). The maximum adsorption capacity of CuO NPs for Congo red was observed at (35) mg/g. The equilibrium information for adsorption have been outfitted to the Langmuir, Freundlich, Temkin and Halsey adsorption isot
... Show MoreMoisture damage is described as a reduction in stiffness and strength durability in asphalt mixtures due to moisture. This study investigated the influence of adding nano silica (NS) to the Asphalt on the moisture susceptibility of hot-mix-asphalt (HMA) mixtures under different aging conditions. NS was mixed with asphalt binder at concentrations of 2%, 4%, and 6% by weight of the binder. To detect the microstructure changes of modified Asphalt and estimate the dispersion of NS within the Asphalt, the field emission scanning electron microscope (FE-SEM) was used. To examine the performance of Asphalt mixed with NS at different aging stages (short-term and long-term aging), asphalt mixture tests such as Marshall stability,
... Show More