The development of low profile gamma-ray detectors has encouraged the production of small field of view (SFOV) hand-held imaging devices for use at the patient bedside and in operating theatres. Early development of these SFOV cameras was focussed on a single modality—gamma ray imaging. Recently, a hybrid system—gamma plus optical imaging—has been developed. This combination of optical and gamma cameras enables high spatial resolution multi-modal imaging, giving a superimposed scintigraphic and optical image. Hybrid imaging offers new possibilities for assisting clinicians and surgeons in localising the site of uptake in procedures such as sentinel node detection. The hybrid camera concept can be extended to a multimodal detector design which can offer stereoscopic images, depth estimation of gamma-emitting sources, and simultaneous gamma and fluorescence imaging. Recent improvements to the hybrid camera have been used to produce dual-modality images in both laboratory simulations and in the clinic. Hybrid imaging of a patient who underwent thyroid scintigraphy is reported. In addition, we present data which shows that the hybrid camera concept can be extended to estimate the position and depth of radionuclide distribution within an object and also report the first combined gamma and Near-Infrared (NIR) fluorescence images.
Linear and nonlinear optical properties of epoxy/ Al2O3 nanocomposites system were studied for epoxy neat and (0.5, 1.5, 3, and 5) % Al2O3 nanocomposites.The band gap of epoxy and its nanocomposites was obtained at these weight ratios. Nonlinear optical properties experiments were performed using Q-switched Nd:YAG laser z-scan system.These experiments were carried out for different parameters: wavelengths (1064 nm and 532 nm), laser intensities (0.530, 0.679, and 0.772) GW/cm2 and weight ratio of Al2O3 nanocomposites. The results showed that the band gaps were decreased with increasing the weight ratio of nanoalumina except at 5wt% and the nonlinear refractive index coefficient is directly proportional to the incident intensities while o
... Show MoreIn this work, the external switching dynamics of a Fabry-Perot etalon are studied via optical bistability system simulation. The simulated set-up of this investigation consists of two laser beams; the first beam is continuous (CW) which is considered as a biasing beam and capable of holding the bistable system for a certain range, which we are interested in, from a point that is very close self-switching to a point where the switching is unachievable. The second beam is modulated by passing the first beam through an acousto-optic modulator (AOM) to produce pulses with a minimum rise time and is used as an external source (coherent switching). In this work, we obtained the optical bistable loops by applying absorption coefficient (α) =
... Show MorePolyaniline polymer has been prepared by chemical oxidation
polymerization method in laboratory successfully. The PANI and
(PVA+PVP) as a polymer blends in different percentage (30%, 50%,
70%) from Polyaniline was prepared. The sample was studies as
optical properties by UV-vis spectrophotometer at (400-700) nm.
The result of optical energy gap was 2.23 eV for pure (PVA+ PVP)
and with additive was increasing with increasing PANI concentration
to become (2.49 for 30% to 2.52 for 70%) PANI. The goal of this
project is prepare triple blend polymer and study the effect when add
conductive polymer (Polyaniline) on the optical properties and
calculate optical constant as energy gap, refractive index, dielectric
In this work we fabrication holographic optical element diffraction grating thickness 40?m and mirror90?m by using dichromated gelatin,to perform that we have to use the Nd-yaG laser doubling frequency of wavelenght (532)nm and its powers of (80)mWatt.we have studyed the thickness and concentration dichromat effect in mirror reflaction ,effect of angle of reconstruction beam in band width and diffraction efficiency ,study effect gelatin hardener of the diffraction efficiency.
The work in this paper focuses on the system quality of direct and coherent communication system for two computers. A system quality is represented by Signal to Noise ratio (SNR) and Bit Error Rate (BER). First part of the work includes implementation of direct optical fiber communication system and measure the system quality .The second part of the work include implementation both the( homodyne and heterodyne)coherent optical fiber communication system and measure the system quality . Laser diode 1310 nm wavelength with its drive circuit used in the transmitter circuit . A single mode of 62.11 km optical fiber is selected as transmission medium . A PIN photo detector is used in the receiver circuit. The optical D-coupler was u
... Show MoreVanadium dioxide nanofilms are one of the most essential materials in electronic applications like smart windows. Therefore, studying and understanding the optical properties of such films is crucial to modify the parameters that control these properties. To this end, this work focuses on investigating the opacity as a function of the energy directed at the nanofilms with different thicknesses(1–100) nm. Effective mediator theories(EMTs), which are considered as the application of Bruggeman’s formalism and the Looyenga mixing rule, have been used to estimate the dielectric constant of VO2 nanofilms. The results show different opacity behaviors at different wavelength ranges(ultraviolet, visible, and infrared). The results depict that th
... Show MoreThin films of tin sulfide (SnS) were prepared by thermal evaporation technique on glass substrates, with thickness in the range of 100, 200 and 300nm and their physical properties were studied with appropriate techniques. The phase of the synthesized thin films was confirmed by X-ray diffraction analysis. Further, the crystallite size was calculated by Scherer formula and found to increase from 58 to 79 nm with increase of thickness. The obtained results were discussed in view of testing the suitability of SnS film as an absorber for the fabrication of low-cost and non toxic solar cell. For thickness, t=300nm, the films showed orthorhombic OR phase with a strong (111) preferred orientation. The films deposited with thickness < 200nm deviate
... Show MoreStudied the optical properties of the membranes CdS thin containing different ratios of ions cadmium to sulfur attended models manner spraying chemical gases on the rules of the glass temperature preparation (350c) were calculated energy gap allowed direct these membranes as observed decrease in the value of the energy gap at reducing the proportion ofsulfur ions as absorption coefficient was calculated
Non thermal argon plasma needle at atmospheric pressure was constructed. The experimental set up was based on simple and low cost electric components that generate electrical field sufficiently high at the electrodes to ionize various gases which flow at atmospheric pressure. A high AC power supply was used with 9.6kV peak to peak and 33kHz frequency. The plasma was generated using two electrodes. The voltage and current discharge waveform were measured. The temperature of Ar gas plasma jet at different gas flow rate and distances from the plasma electrode was also recorded. It was found that the temperature increased with increasing frequency to reach the maximum value at 15 kHz, and that the current leading the voltage, which demonstra
... Show MoreThe present paper deals with prepared of ternary Se80-xTe20Gex system alloys and thin films. The XRD analysis improved that the amorphous structure of alloys and thin films for ternary Se80-xTe20Gex (at x=10and 20at.%Ge) which prepared by thermal evaporation techniques with thickness 250 nm. The optical energy gap measurements show that the optical energy gap decreases with increasing of (Ge) content from (1.7 to 1.47 eV)
It is found that the optical constants, such as refractive
index ,extinction coefficient, real and imaginary dielectric
constant are non systematic with increasing of Ge contents
and annealing temperatures