The development of low profile gamma-ray detectors has encouraged the production of small field of view (SFOV) hand-held imaging devices for use at the patient bedside and in operating theatres. Early development of these SFOV cameras was focussed on a single modality—gamma ray imaging. Recently, a hybrid system—gamma plus optical imaging—has been developed. This combination of optical and gamma cameras enables high spatial resolution multi-modal imaging, giving a superimposed scintigraphic and optical image. Hybrid imaging offers new possibilities for assisting clinicians and surgeons in localising the site of uptake in procedures such as sentinel node detection. The hybrid camera concept can be extended to a multimodal detector design which can offer stereoscopic images, depth estimation of gamma-emitting sources, and simultaneous gamma and fluorescence imaging. Recent improvements to the hybrid camera have been used to produce dual-modality images in both laboratory simulations and in the clinic. Hybrid imaging of a patient who underwent thyroid scintigraphy is reported. In addition, we present data which shows that the hybrid camera concept can be extended to estimate the position and depth of radionuclide distribution within an object and also report the first combined gamma and Near-Infrared (NIR) fluorescence images.
In the current research, multiple mixing ratios of gamma -transitions of the energy levels 60𝑁𝑑 142−150 isotopes populated in 𝑁𝑑(𝑛, 𝑛 ˊ 60 142−150 ) 60𝑁𝑑 142−150 interaction are calculated using the constant statistical tensor (CST) method. The results obtained are, in general, in good agreement or consistent, within the experimental error, with the results published in the previously researches. Existing discrepancies result from inaccuracies in the experimental results of previous works. The current results confirm the validity of the constant statistical tenser method of calculating the values of mixing ratios and its predictability of errors in experimental results
Image compression is one of the data compression types applied to digital images in order to reduce their high cost for storage and/or transmission. Image compression algorithms may take the benefit of visual sensitivity and statistical properties of image data to deliver superior results in comparison with generic data compression schemes, which are used for other digital data. In the first approach, the input image is divided into blocks, each of which is 16 x 16, 32 x 32, or 64 x 64 pixels. The blocks are converted first into a string; then, encoded by using a lossless and dictionary-based algorithm known as arithmetic coding. The more occurrence of the pixels values is codded in few bits compare with pixel values of less occurre
... Show MoreThe research is dealing with the absorption and fluorescence spectra for the hybrid of an Epoxy Resin doped with organic dye Rhodamine (R6G) of different concentrations (5*10-6, 5*10-5, 1*10-5, 1*10-4, 5*10-4) Mol/ℓ at room temperature. The Quantum efficiency Qfm, the rate of fluorescence emission Kfm (s-1), the non-radiative lifetime τfm (s), fluorescence lifetime τf and the Stokes shift were calculated. Also the energy gap (Eg) for each dye concentration was evaluated. The results showed that the maximum quantum effi
... Show More<span lang="EN-US">Proper employment of Hybrid Wind/ PV system is often implemented near the load, and it is linked with the grid to study dynamic stability analysis. Generally, instability is because of sudden load demand variant and variant in renewable sources generation. As well as, weather variation creates several factors that affect the operation of the integrated hybrid system. So this paper introduces output result of a PV /wind via power electronic technique; DC chopper; that is linked to Iraqi power system to promote the facilitating achievement of Wind/ PV voltage. Moreover, PSS/E is used to study dynamic power stability for hybrid system which is attached to an effective region of Iraqi Network. The hybrid system
... Show MoreSemiconductor quantum dots (QDs) have attracted tremendous attentions for their unique characteristics for solid-state lighting and thin-film display applications. A simple chemical method was used to synthesis quantum dots (QDs) of zinc sulfide (ZnS) with low cost. The XRD) shows cubic phase of the prepared ZnS with an average particles size of (3-29) nm. In UV-Vis. spectra observed a large blue shift over 38 nm. The band gaps energy (Eg) was 3.8 eV and 3.37eV from the absorption and photoluminescence (PL) respectively which larger than the Eg for bulk. QDs-LED hybrid devices were fabricated using ITO/ PEDOT: PSS/ Poly-TPD/ ZnS-QDs/ with different electron transport layers and cathode of LiF/Al layers. The EL spectrum reveals a bro
... Show More