Let R be a commutative ring with identity, and W be a unital (left) R-module. In this paper we introduce and study the concept of a quasi-small prime modules as generalization of small prime modules.
he concept of small monoform module was introduced by Hadi and Marhun, where a module U is called small monoform if for each non-zero submodule V of U and for every non-zero homomorphism f ∈ Hom R (V, U), implies that ker f is small submodule of V. In this paper the author dualizes this concept; she calls it co-small monoform module. Many fundamental properties of co-small monoform module are given. Partial characterization of co-small monoform module is established. Also, the author dualizes the concept of small quasi-Dedekind modules which given by Hadi and Ghawi. She show that co-small monoform is contained properly in the class of the dual of small quasi-Dedekind modules. Furthermore, some subclasses of co-small monoform are investiga
... Show MoreLet R be a commutative ring with unity. And let E be a unitary R-module. This paper introduces the notion of 2-prime submodules as a generalized concept of 2-prime ideal, where proper submodule H of module F over a ring R is said to be 2-prime if , for r R and x F implies that or . we prove many properties for this kind of submodules, Let H is a submodule of module F over a ring R then H is a 2-prime submodule if and only if [N ] is a 2-prime submodule of E, where r R. Also, we prove that if F is a non-zero multiplication module, then [K: F] [H: F] for every submodule k of F such that H K. Furthermore, we will study the basic properties of this kind of submodules.
Let R be a commutative ring with unity .M an R-Module. M is called coprime module (dual notion of prime module) if ann M =ann M/N for every proper submodule N of M In this paper we study coprime modules we give many basic properties of this concept. Also we give many characterization of it under certain of module.
Let R be an associative ring with identity and M be unital non zero R-module. A
submodule N of a module M is called a δ-small submodule of M (briefly N << M )if
N+X=M for any proper submodule X of M with M/X singular, we have
X=M .
In this work,we study the modules which satisfies the ascending chain condition
(a. c. c.) and descending chain condition (d. c. c.) on this kind of submodules .Then
we generalize this conditions into the rings , in the last section we get same results
on δ- supplement submodules and we discuss some of these results on this types of
submodules.
Let R be commutative Ring , and let T be unitary left .In this paper ,WAPP-quasi prime submodules are introduced as new generalization of Weakly quasi prime submodules , where proper submodule C of an R-module T is called WAPP –quasi prime submodule of T, if whenever 0≠rstϵC, for r, s ϵR , t ϵT, implies that either r tϵ C +soc or s tϵC +soc .Many examples of characterizations and basic properties are given . Furthermore several characterizations of WAPP-quasi prime submodules in the class of multiplication modules are established.
New types of modules named Fully Small Dual Stable Modules and Principally Small Dual Stable are studied and investigated. Both concepts are generalizations of Fully Dual Stable Modules and Principally Dual Stable Modules respectively. Our new concepts coincide when the module is Small Quasi-Projective, and by considering other kind of conditions. Characterizations and relations of these concepts and the concept of Small Duo Modules are investigated, where every fully small dual stable R-module M is small duo and the same for principally small dual stable.
Let R be a ring and let M be a left R-module. In this paper introduce a small pointwise M-projective module as generalization of small M- projective module, also introduce the notation of small pointwise projective cover and study their basic properties.
.
In this paper, we introduce the concept of e-small M-Projective modules as a generalization of M-Projective modules.
Let R be a ring with identity and Ą a left R-module. In this article, we introduce new generalizations of compressible and prime modules, namely s-compressible module and s-prime module. An R-module A is s-compressible if for any nonzero submodule B of A there exists a small f in HomR(A, B). An R-module A is s-prime if for any submodule B of A, annR (B) A is small in A. These concepts and related concepts are studied in as well as many results consist properties and characterizations are obtained.
In this paper, we study a new concept of fuzzy sub-module, called fuzzy socle semi-prime sub-module that is a generalization the concept of semi-prime fuzzy sub-module and fuzzy of approximately semi-prime sub-module in the ordinary sense. This leads us to introduce level property which studies the relation between the ordinary and fuzzy sense of approximately semi-prime sub-module. Also, some of its characteristics and notions such as the intersection, image and external direct sum of fuzzy socle semi-prime sub-modules are introduced. Furthermore, the relation between the fuzzy socle semi-prime sub-module and other types of fuzzy sub-module presented.