Globally, Sustainability is very quickly becoming a fundamental requirement of the construction industry as it delivers its projects; whether buildings or infrastructures. Throughout more than two decades, many modeling schemes, evaluation tools, and rating systems have been introduced en route to realizing sustainable construction. Many of these, however, lack consensus on evaluation criteria, a robust scientific model that captures the logic behind their sustainability performance evaluation, and therefore experience discrepancies between rated results and actual performance. Moreover, very few of the evaluation tools available satisfactorily address infrastructure projects. The research introduces a system engineering model that abstracts the environment, the construction product, and its production system as three interacting systems that exchange materials, energy, and information. The model utilizes this setup to capture and quantify essential flows exchanged between such three systems, to evaluate sustainability. The research walks through the development of a generic case of the model, and then demonstrates its utility in evaluating the sustainability performance of civil infrastructure projects. The developed model will address an identified gap within the current body of knowledge by considering infrastructure projects. Through the ability to simulate different scenarios, the model will enable identifying which activities, products, and processes impact the environment more, and hence potential areas for optimization and improvement.
In this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is presented. The system considered is described by an unknown NARMA-L2 model and a feedforward neural network is used to learn the model with two stages. The first stage is learned off-line with two configuration serial-parallel model & parallel model to ensure that model output is equal to actual output of the system & to find the jacobain of the system. Which appears to be of critical importance parameter as it is used for the feedback controller and the second stage is learned on-line to modify the weights of the model in order to control the variable parameters that will occur to the system. A back propagation neural network is appl
... Show MoreLow oil extraction and early high water production are caused in part by reservoir heterogeneity. Huge quantities of water production are prevalent issues that happen in older reservoirs. Polyacrylamide polymer gel systems have been frequently employed as plugging agents in heterogeneous reservoirs to regulate water output and increase sweep efficiency. Polyacrylamide polymer gel systems are classified into three classes depending on their composition and application conditions, which are in-situ monomer gel, in-situ polymer gel, and preformed particle gel (PPG).
This paper gives a comprehensive review of PPG’s status, preparation, and mechanisms. Many sorts of PPGs are categorized, for example, millimeter-sized preformed p
... Show MoreThe world is currently facing a medical crisis. The epidemic has affected millions of people around the world since its appearance. This situation needs an urgent solution. Most countries have used different solutions to stop the spread of the epidemic. The World Health Organization has imposed some rules that people should adhere. The rules are such, wearing masks, quarantining infected people and social distancing. Social distancing is one of the most important solutions that have given good results to confront the emerging virus. Several systems have been developed that use artificial intelligence and deep learning to track social distancing. In this study, a system based on deep learning has been proposed. The system includes monitor
... Show MoreThe execution phase of the project is most dangerous and the most drain on the resources during project life cycle, therefore, its need to monitor and control by specialists to exceeded obstructions and achieve the project goals. The study aims to detect the actual reasons behind mismanagement of the execution phase. The study begins with theoretical part, where it deals with the concepts of project, project selection, project management, and project processes. Field part consists of three techniques: 1- brainstorming, 2- open interviews with experts and 3- designed questionnaire (with 49 reason. These reasons result from brainstorming and interviewing with experts.), in order to find the real reasons behind misman
... Show MoreIn this paper, we consider the problem of stochastic project network when some or all activities are interrupted. An approach has been built to schedule the critical activities, by constructing some expressions based on the project lateness costs due to the interruption activities. Two simple example are presented to validate our approach.
Key words: Project Management, Project scheduling, Stochastic activity duration, Stochastic PERT.
Introduction
Recently, Projects planning and optimal timing, under uncertainty are extremely critical for many organizations, see [19]. Having an effective mathematical model wi
... Show More