a laser ablation Q-switched Nd: YAG laser with a wave-length of 355 nm at a variety of laser pulse energies (E) and deposited on porous silicon (PS). Optical emission spectrometer was used to diagnosed medium air to study gold plasma characteristics and prepared Au nanoparticles. The laser pulse energy influence has been studied on the plasma characteristics in air. The data showed the emergence of the ionic (Au II) spectral emission lines in the gold plasma emission spectrum. XRD has been utilized to examine structural characteristics. Moreover, AFM results 37.2 nm as the mean value of the diameter that is coordinated in a shape similar to the rod that appears for Au NPs, in addition to that, TEM has been an indication of the fact that synthesized Au NPs were spherical with a mean size of particles, ranging from 25 nm to 30 nm. At high laser pulse energy, the intensity of all emission peaks in the air at atmospheric pressure was considerably greater. Finally, variations in the operating temperature associated with the NH3 gas sensor, created from the samples that have been prepared on the sensitivity of the sensor and response time have been evaluated, the maximal sensitivity is nearly 41% concerning Au NPs that have been ablated via laser energy (E) 400 mJ on the porous silicon of the NH3 gas.
The Internet of Things (IoT) is a network of devices used for interconnection and data transfer. There is a dramatic increase in IoT attacks due to the lack of security mechanisms. The security mechanisms can be enhanced through the analysis and classification of these attacks. The multi-class classification of IoT botnet attacks (IBA) applied here uses a high-dimensional data set. The high-dimensional data set is a challenge in the classification process due to the requirements of a high number of computational resources. Dimensionality reduction (DR) discards irrelevant information while retaining the imperative bits from this high-dimensional data set. The DR technique proposed here is a classifier-based fe
... Show MoreSemantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreIn this paper, new brain tumour detection method is discovered whereby the normal slices are disassembled from the abnormal ones. Three main phases are deployed including the extraction of the cerebral tissue, the detection of abnormal block and the mechanism of fine-tuning and finally the detection of abnormal slice according to the detected abnormal blocks. Through experimental tests, progress made by the suggested means is assessed and verified. As a result, in terms of qualitative assessment, it is found that the performance of proposed method is satisfactory and may contribute to the development of reliable MRI brain tumour diagnosis and treatments.
A multivariate multisite hydrological data forecasting model was derived and checked using a case study. The philosophy is to use simultaneously the cross-variable correlations, cross-site correlations and the time lag correlations. The case study is of two variables, three sites, the variables are the monthly rainfall and evaporation; the sites are Sulaimania, Dokan, and Darbandikhan.. The model form is similar to the first order auto regressive model, but in matrices form. A matrix for the different relative correlations mentioned above and another for their relative residuals were derived and used as the model parameters. A mathematical filter was used for both matrices to obtain the elements. The application of this model indicates i
... Show MoreExtractive multi-document text summarization – a summarization with the aim of removing redundant information in a document collection while preserving its salient sentences – has recently enjoyed a large interest in proposing automatic models. This paper proposes an extractive multi-document text summarization model based on genetic algorithm (GA). First, the problem is modeled as a discrete optimization problem and a specific fitness function is designed to effectively cope with the proposed model. Then, a binary-encoded representation together with a heuristic mutation and a local repair operators are proposed to characterize the adopted GA. Experiments are applied to ten topics from Document Understanding Conference DUC2002 datas
... Show MoreThe present study aims at assessing the status of heavy metals such as nickel, cadmium and lead to pollute some areas of Baghdad city. In this study the spectral absorption device and the program ArcGIS 10.2 will using. The soil samples were taken from five different locations in Baghdad, including Ameriya, Kadhimiya, Palestine Street, Jadiriyah and Taji for the 5cm depth layer on both sides of the road. This work on soil samples has been completed in two :phases 1 - Preparation of samples: For the purpose of converting solid material into a extract containing elements in the form of single ions can be estimated by the device 2-Determination of elements: Samples prepared to the device
Background: Nursing interventions tailored to the smoking triggers in patients with non-communicable chronic diseases are essential. However, these interventions are scant due to the nature of factors associated with smoking cessation and the poor understanding of the effect of nurse-led intervention in Iraq.Purpose: This study aimed to determine the dominant smoking triggers and examine the effects of a tailored nursing intervention on smoking behavior in patients with non-communicable chronic diseases.Methods: Convenience samples of 128 patients with non-communicable chronic diseases, male and female patients, who were 18-70 years old, were recruited in this quasi-experimental, randomized comparative trial in the outpatient clinic
... Show More