The Internet of Things (IoT) is a network of devices used for interconnection and data transfer. There is a dramatic increase in IoT attacks due to the lack of security mechanisms. The security mechanisms can be enhanced through the analysis and classification of these attacks. The multi-class classification of IoT botnet attacks (IBA) applied here uses a high-dimensional data set. The high-dimensional data set is a challenge in the classification process due to the requirements of a high number of computational resources. Dimensionality reduction (DR) discards irrelevant information while retaining the imperative bits from this high-dimensional data set. The DR technique proposed here is a classifier-based feature selection using an extra tree classifier (EXT). The entropy values of features are used for the construction of trees in EXT, which is to build a lower-dimensional space. Linear discriminant analysis (LDA), K-nearest neighbor classifier (KNN), decision tree classifier (DTC), and random forest classifier (RFC) empirically evaluate the proposed feature selection mechanism. EXT is compared with other DR techniques like RFC and principal component analysis (PCA). The performance metrics of the classifiers are used to evaluate the proposed work.
Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac
... Show MoreNowad ays, with the development of internet communication that provides many facilities to the user leads in turn to growing unauthorized access. As a result, intrusion detection system (IDS) becomes necessary to provide a high level of security for huge amount of information transferred in the network to protect them from threats. One of the main challenges for IDS is the high dimensionality of the feature space and how the relevant features to distinguish the normal network traffic from attack network are selected. In this paper, multi-objective evolutionary algorithm with decomposition (MOEA/D) and MOEA/D with the injection of a proposed local search operator are adopted to solve the Multi-objective optimization (MOO) followed by Naï
... Show MoreHeart disease identification is one of the most challenging task that requires highly experienced cardiologists. However, in developing nations such as Ethiopia, there are a few cardiologists and heart disease detection is more challenging. As an alternative solution to cardiologist, this study proposed a more effective model for heart disease detection by employing random forest and sequential feature selection (SFS). SFS is an effective approach to improve the performance of random forest model on heart disease detection. SFS removes unrelated features in heart disease dataset that tends to mislead random forest model on heart disease detection. Thus, removing inappropriate and duplicate features from the training set with sequential f
... Show MoreCOVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in
The Diffie-Hellman is a key exchange protocol to provide a way to transfer shared secret keys between two parties, although those parties might never have communicated together. This paper suggested a new way to transfer keys through public or non-secure channels depending on the sent video files over the channel and then extract keys. The proposed method of key generation depends on the video file content by using the entropy value of the video frames. The proposed system solves the weaknesses in the Diffie-Hellman key exchange algorithm, which is MIMA (Man-in-the-Middle attack) and DLA( Discrete logarithm attack). When the method used high definition videos with a vast amount of data, the keys generated with a large number up to 5
... Show MoreThe designer must find the optimum match between the object's technical and economic needs and the performance and production requirements of the various material options when choosing material for an engineering application. This study proposes an integrated (hybrid) strategy for selecting the optimal material for an engineering design depending on design requirements. The primary objective is to determine the best candidate material for the drone wings based on Ashby's performance indices and then rank the result using a grey relational technique with the entropy weight method. Aluminum alloys, titanium alloys, composites, and wood have been suggested as suitable materials for manufacturing drone wings. The requirement
... Show MoreFeature selection represents one of the critical processes in machine learning (ML). The fundamental aim of the problem of feature selection is to maintain performance accuracy while reducing the dimension of feature selection. Different approaches were created for classifying the datasets. In a range of optimization problems, swarming techniques produced better outcomes. At the same time, hybrid algorithms have gotten a lot of attention recently when it comes to solving optimization problems. As a result, this study provides a thorough assessment of the literature on feature selection problems using hybrid swarm algorithms that have been developed over time (2018-2021). Lastly, when compared with current feature selection procedu
... Show More