Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration on each subsystem to futher reduce the hardware requirements. The DNN was designed using a system generator and implemented using very hardware description language (VHDL). The system achievments outcomes the superior’s accuracy rate of approximately 99.6 percent in distinguishing bengin from malignant tissue. Also, the hardware resources were reduced by 30 percent from works of literature with an error rate of 7e-4 when using the Kintex-7 xc7k325t-3fbg676 board.
The aim of this paper, is to design multilayer Feed Forward Neural Network(FFNN)to find the approximate solution of the second order linear Volterraintegro-differential equations with boundary conditions. The designer utilized to reduce the computation of solution, computationally attractive, and the applications are demonstrated through illustrative examples.
Due to the huge variety of 5G services, Network slicing is promising mechanism for dividing the physical network resources in to multiple logical network slices according to the requirements of each user. Highly accurate and fast traffic classification algorithm is required to ensure better Quality of Service (QoS) and effective network slicing. Fine-grained resource allocation can be realized by Software Defined Networking (SDN) with centralized controlling of network resources. However, the relevant research activities have concentrated on the deep learning systems which consume enormous computation and storage requirements of SDN controller that results in limitations of speed and accuracy of traffic classification mechanism. To fill thi
... Show MoreThe current study was conducted in the period extending from November 2018 to October 2019 and designed as a case-control study and aimed to assess the seroprevalence of HCMV. However, a total number of 91serum specimens were collected to fulfill this purpose from females (71 breast cancer patients, and control group of 20 females) attending Al-Amal hospital for cancer management and Baghdad teaching hospital and the practical part was performed in College of Science, University of Baghdad. The study protocol was approved by the Ethics Committee at the Department of Biology (Reference: BEC/0220/0011). The immunological part for evaluation of seroprevalence of HCMV was accomplished by ELISA technique which revealed that anti-HCMV IgG was sco
... Show MoreAbstract: E2F6 is a member of the E2F family of transcription factors involved in regulation of a wide variety of genes through both activation and repression. E2F6 has been reported as overexpressed in breast cancers but whether or not this is important for tumor development is unclear. We first checked E2F6 expression in tumor cDNAs and the protein level in a range of breast cancer cell lines. RNA interference-mediated depletion was then used to assess the importance of E2F6 expression in cell lines with regard to cell cycle profile using fluorescence-activated cell sorting and a cell survival assay using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The overexpression of E2F6 was confirmed in breast tumor cDNA samp
... Show MoreThe aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting
... Show MoreBackground : To assess the actual practice of breast self-examination (BSE), as an early detection tool for breast cancer, among a sample of patients affected with breast cancer in Iraq.Methods: A random sample of 200 female patients with breast cancer was analyzed to evaluate the extent of their actual practice of breast self-examination before the diagnosis of the disease. The examined variables included the age of the patients, marital status, education, occupation, smoking habit, family history of cancer, frequency of gravidity, parity and abortions. Results: The age of patients ranged from (24-70) years with a mean age of 48 years. The highest frequency of the examined sample
... Show MoreBackground: Breast Cancer is the most common malignancy among the Iraqi population; the majority of cases are still diagnosed at advanced stages with poor prospects of cure. Early detection through promoting public awareness is one of the promising tools in its control. Objectives: To evaluate the baseline needs for breast cancer awareness in Iraq through exploring level of knowledge, beliefs and behavior towards the disease and highlighting barriers to screening among a sample of Iraqi women complaining of breast cancer. Methodology: Two-hundred samples were enrolled in this study; gathered from the National
Its well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show MoreBreast cancer is the most repeatedly detected cancer category and the second reason cause of cancer-linked deaths among women worldwide. Tumor bio-indictor is a term utilized to describe possible indicators for carcinoma diagnosis, development and progression. The goal of this study is to evaluate part of some cytokines and biomarkers for both serum and saliva samples in breast cancer then estimate their potential value in the early diagnosis of breast cancer by doing more researches in saliva, and utilizing saliva instead of blood (serum and plasma) in sample collection from patients. Serum and salivary samples were taken from 72 patients with breast cancer and 45 healthy controls, in order to investigate the following
... Show More