Preferred Language
Articles
/
R4ZTBIYBIXToZYALa3dJ
Reduced hardware requirements of deep neural network for breast cancer diagnosis
...Show More Authors

Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration on each subsystem to futher reduce the hardware requirements. The DNN was designed using a system generator and implemented using very hardware description language (VHDL). The system achievments outcomes the superior’s accuracy rate of approximately 99.6 percent in distinguishing bengin from malignant tissue. Also, the hardware resources were reduced by 30 percent from works of literature with an error rate of 7e-4 when using the Kintex-7 xc7k325t-3fbg676 board.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Feb 02 2010
Journal Name
Advances In Software Engineering
A Strategy for Automatic Quality Signing and Verification Processes for Hardware and Software Testing
...Show More Authors

We propose a novel strategy to optimize the test suite required for testing both hardware and software in a production line. Here, the strategy is based on two processes: Quality Signing Process and Quality Verification Process, respectively. Unlike earlier work, the proposed strategy is based on integration of black box and white box techniques in order to derive an optimum test suite during the Quality Signing Process. In this case, the generated optimal test suite significantly improves the Quality Verification Process. Considering both processes, the novelty of the proposed strategy is the fact that the optimization and reduction of test suite is performed by selecting only mutant killing test cases from cumulating t-way test ca

... Show More
View Publication
Crossref (7)
Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Biochemical And Cellular Archives
Association Of Human Cytomegalovirus With Her2 Protooncogene Overexpression In Iraqi Breast Cancer Patients
...Show More Authors

Human cytomegalovirus (HCMV) has a worldwide distribution and common infections. The presence of HCMV genome and antigens has been detected in many kinds of human cancers. The proto-oncogene Her2/neu is overexpressed in 25% to 30% of human breast cancers and frequently associated with tumor aggressiveness and worse prognosis. Examination was applied to detect different HCMV antigens and to demonstrate their correlation with Her2/neu overexpression in breast cancer. The present study includes samples from 70 women of 60 breast cancer patients and 10 normal breast tissues. Formalin-fixed paraffin embedded tissue blocks were obtained from each woman according to ethical approval. Human cytomegalovirus early antigen expression was detected in 5

... Show More
Preview PDF
Scopus (4)
Scopus
Publication Date
Wed Oct 07 2020
Journal Name
Indian Journal Of Forensic Medicine & Toxicology
Correlation of Toxoplasmosis Seroprevalence and Serum Level of Interleukin-10 in Iraqi Breast Cancer Women
...Show More Authors

Toxoplasmosis is regarded as one of the most important global life-threatening diseases in immune-compromised people. The intracellular protozoon Toxoplasma gondii is the causative pathogen of toxoplasmosis. Aim of this study is to investigate the possible association between T. gondii infection and breast cancer (BC) in Iraqi women, also to assess the effect of T. gondiion interleukin 10 (IL-10) of the immune response. By ELISA method, blood samples from 81 women with breast cancer and 60 apparently healthy women have been examined for presence of anti-toxoplasmaantibodies, also the levels of serum IL-10 were estimated in these subjects. Results showed that women with BC had the highest prevalence rate of toxoplasmosis. The anti- T.gondii

... Show More
View Publication
Scopus Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Iop Conference Series: Earth And Environmental Science
Computer Model Application for Sorting and Grading Citrus Aurantium Using Image Processing and Artificial Neural Network
...Show More Authors
Abstract<p>This study was conducted in College of Science \ Computer Science Department \ University of Baghdad to compare between automatic sorting and manual sorting, which is more efficient and accurate, as well as the use of artificial intelligence in automated sorting, which included artificial neural network, image processing, study of external characteristics, defects and impurities and physical characteristics; grading and sorting speed, and fruits weigh. the results shown value of impurities and defects. the highest value of the regression is 0.40 and the error-approximation algorithm has recorded the value 06-1 and weight fruits fruit recorded the highest value and was 138.20 g, Gradin</p> ... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jan 06 2021
Journal Name
Pierm
ULTRA-WIDEBAND FEATURING ENHANCED DELAY AND SUM ALGORITHM AND ORIENTED FOR DETECTING EARLY STAGE BREAST CANCER
...Show More Authors

Abstract—In this study, we present the experimental results of ultra-wideband (UWB) imaging oriented for detecting small malignant breast tumors at an early stage. The technique is based on radar sensing, whereby tissues are differentiated based on the dielectric contrast between the disease and its surrounding healthy tissues. The image reconstruction algorithm referred to herein as the enhanced version of delay and sum (EDAS) algorithm is used to identify the malignant tissue in a cluttered environment and noisy data. The methods and procedures are tested using MRI-derived breast phantoms, and the results are compared with images obtained from classical DAS variant. Incorporating a new filtering technique and multiplication procedure, t

... Show More
Publication Date
Wed Oct 07 2020
Journal Name
Indian Journal Of Forensic Medicine &amp; Toxicology
CA 27-29: A Valuable Marker for Breast Cancer Management in Correlation with CA 15-3
...Show More Authors

View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Spatial Prediction of Monthly Precipitation in Sulaimani Governorate using Artificial Neural Network Models
...Show More Authors

ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Nov 20 2024
Journal Name
Naunyn-schmiedeberg's Archives Of Pharmacology
The potential role of targeting the leptin receptor as a treatment for breast cancer in the context of hyperleptinemia: a literature review
...Show More Authors

Since cancer is becoming a leading cause of death worldwide, efforts should be concentrated on understanding its underlying biological alterations that would be utilized in disease management, especially prevention strategies. Within this context, multiple bodies of evidence have highlighted leptin’s practical and promising role, a peptide hormone extracted from adipose and fatty tissues with other adipokines, in promoting the proliferation, migration, and metastatic invasion of breast carcinoma cells. Excessive blood leptin levels and hyperleptinemia increase body fat content and stimulate appetite. Also, high leptin level is believed to be associated with several conditions, including overeating, emotional stress, inflammation, obesity,

... Show More
View Publication
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Engineering
Intelligent Congestion Control of 5G Traffic in SDN using Dual-Spike Neural Network
...Show More Authors

Software Defined Networking (SDN) with centralized control provides a global view and achieves efficient network resources management. However, using centralized controllers has several limitations related to scalability and performance, especially with the exponential growth of 5G communication. This paper proposes a novel traffic scheduling algorithm to avoid congestion in the control plane. The Packet-In messages received from different 5G devices are classified into two classes: critical and non-critical 5G communication by adopting Dual-Spike Neural Networks (DSNN) classifier and implementing it on a Virtualized Network Function (VNF). Dual spikes identify each class to increase the reliability of the classification

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Engineering
Artificial Neural Network Models to Predict the Cost and Time of Wastewater Projects
...Show More Authors

Infrastructure, especially wastewater projects, plays an important role in the life of residential communities. Due to the increasing population growth, there is also a significant increase in residential and commercial facilities. This research aims to develop two models for predicting the cost and time of wastewater projects according to independent variables affecting them. These variables have been determined through a questionnaire distributed to 20 projects under construction in Al-Kut City/ Wasit Governorate/Iraq. The researcher used artificial neural network technology to develop the models. The results showed that the coefficient of correlation R between actual and predicted values were 99.4% and 99 %, MAPE was

... Show More
View Publication Preview PDF
Crossref (3)
Crossref