Preferred Language
Articles
/
R4ZTBIYBIXToZYALa3dJ
Reduced hardware requirements of deep neural network for breast cancer diagnosis
...Show More Authors

Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration on each subsystem to futher reduce the hardware requirements. The DNN was designed using a system generator and implemented using very hardware description language (VHDL). The system achievments outcomes the superior’s accuracy rate of approximately 99.6 percent in distinguishing bengin from malignant tissue. Also, the hardware resources were reduced by 30 percent from works of literature with an error rate of 7e-4 when using the Kintex-7 xc7k325t-3fbg676 board.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Methods And Objects Of Chemical Analysis
Spectrophotometric Analysis of Quaternary Drug Mixtures using Artificial Neural network model
...Show More Authors

A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.

View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Tue Sep 06 2022
Journal Name
Methods And Objects Of Chemical Analysis
Spectrophotometric Analysis of Quaternary Drug Mixtures using Artificial Neural network model
...Show More Authors

A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twenty four samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.

Scopus (2)
Scopus
Publication Date
Mon Mar 11 2019
Journal Name
Baghdad Science Journal
Solving Mixed Volterra - Fredholm Integral Equation (MVFIE) by Designing Neural Network
...Show More Authors

       In this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra – Fredholm Integral Equations (MVFIEs) of second kind in 2–dimensions. in our method, we present a multi – layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit. Transfer function (Log – sigmoid) and training algorithm (Levenberg – Marquardt) are used as a sigmoid activation of each unit. A comparison between the results of numerical experiment and the analytic solution of some examples has been carried out in order to justify the efficiency and the accuracy of our method.

         

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Wed Jan 06 2021
Journal Name
Pierm
ULTRA-WIDEBAND FEATURING ENHANCED DELAY AND SUM ALGORITHM AND ORIENTED FOR DETECTING EARLY STAGE BREAST CANCER
...Show More Authors

Abstract—In this study, we present the experimental results of ultra-wideband (UWB) imaging oriented for detecting small malignant breast tumors at an early stage. The technique is based on radar sensing, whereby tissues are differentiated based on the dielectric contrast between the disease and its surrounding healthy tissues. The image reconstruction algorithm referred to herein as the enhanced version of delay and sum (EDAS) algorithm is used to identify the malignant tissue in a cluttered environment and noisy data. The methods and procedures are tested using MRI-derived breast phantoms, and the results are compared with images obtained from classical DAS variant. Incorporating a new filtering technique and multiplication procedure, t

... Show More
Publication Date
Wed Oct 07 2020
Journal Name
Indian Journal Of Forensic Medicine & Toxicology
CA 27-29: A Valuable Marker for Breast Cancer Management in Correlation with CA 15-3
...Show More Authors

View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Thu May 05 2022
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Classification SINGLE-LEAD ECG by using conventional neural network algorithm
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Dec 14 2019
Journal Name
International Journal On Emerging Technologies
Utilizing an Artificial Neural Network Model to Predict Bearing Capacity of Stone Columns
...Show More Authors

ABSTRACT: Ultimate bearing capacity of soft ground reinforced with stone column was recently predicted using various artificial intelligence technologies such as artificial neural network because of all the advantages that they can offer in minimizing time, effort and cost. As well as, most of applied theories or predicted formulas deduced analytically from previous studies were feasible only for a particular testing environment and do not match other field or laboratory datasets. However, the performance of such techniques depends largely on input parameters that really affect the target output and missing of any parameter can lead to inaccurate results and give a false indicator. In the current study, data were collected from previous rel

... Show More
View Publication
Scopus (3)
Scopus
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Mobile Position Estimation using Artificial Neural Network in CDMA Cellular Systems
...Show More Authors

Using the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through tha

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Mobile position estimation using artificial neural network in CDMA cellular systems
...Show More Authors

Using the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result

... Show More
Publication Date
Tue Feb 02 2010
Journal Name
Advances In Software Engineering
A Strategy for Automatic Quality Signing and Verification Processes for Hardware and Software Testing
...Show More Authors

We propose a novel strategy to optimize the test suite required for testing both hardware and software in a production line. Here, the strategy is based on two processes: Quality Signing Process and Quality Verification Process, respectively. Unlike earlier work, the proposed strategy is based on integration of black box and white box techniques in order to derive an optimum test suite during the Quality Signing Process. In this case, the generated optimal test suite significantly improves the Quality Verification Process. Considering both processes, the novelty of the proposed strategy is the fact that the optimization and reduction of test suite is performed by selecting only mutant killing test cases from cumulating t-way test ca

... Show More
View Publication
Crossref (7)
Crossref