Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Trees (DT), K- nearest neighbor (KNN), and Logistic Regression (LR), have been used to identify the parameters that allow for effective price estimation. These approaches were tested on a data set of an extensive Indian airline network. When it came to estimating flight prices, the results demonstrate that the Decision tree method is the best conceivable Algorithm for predicting the price of a flight in our particular situation with 89% accuracy. The SGD method had the lowest accuracy, which was 38 %, while the accuracies of the KNN, NB, ADA, and LR algorithms were 69 %, 45 %, and 43 %, respectively. This study's presented methodologies will allow airline firms to predict flight prices more accurately, enhance air travel, and eliminate delay dispersion.
15 sediment samples were collected; 8 samples from the eastern bank, and 7 samples from the western bank of Al-Wind River in Diyala governorate to assess the sediment pollution in some trace elements such as Fe, Ni, Cd, Zr, Zn and Cu in addition to some oxides such as Al2O3, CaO, Na2O and K2O to find the effect of anthropogenic pollution and the industrial production on the sediment closed especially Naftkhana by using some geochemical pollution indices such as: geoaccumulation factor (I-geo), enrichment factor (EF),contamination factor (CF), pollution loud index (PLI) and to evaluate the degree of weathering by Applying the Chemical Index of Alteration (CIA)in both banks of Al-Wind River. The
... Show MoreConvolutional Neural Networks (CNN) have high performance in the fields of object recognition and classification. The strength of CNNs comes from the fact that they are able to extract information from raw-pixel content and learn features automatically. Feature extraction and classification algorithms can be either hand-crafted or Deep Learning (DL) based. DL detection approaches can be either two stages (region proposal approaches) detector or a single stage (non-region proposal approach) detector. Region proposal-based techniques include R-CNN, Fast RCNN, and Faster RCNN. Non-region proposal-based techniques include Single Shot Detector (SSD) and You Only Look Once (YOLO). We are going to compare the speed and accuracy of Faster RCNN,
... Show MoreThis research was carried out at University of Baghdad - College of Agricultural Engineering Sciences during the fall season of 2020 and spring season of 2021 in order to evaluate the effect of organic fertilizer and the foliar application of boron on the growth and yield of industrial potatoes (Solanum tuberosum L.). Using factorial experiment (5*4) within Randomized Complete Block Design with three replicates, the organic fertilizer (palm fronds peat) was applied at four levels (0, 12, 24, and 36 ton ha-1) in addition to the treatment of the recommended of chemical fertilizer. The foliar application of Boron was applied at four concentrations which were 0, 100, 150 and 200 mg (H3Bo3). L-1. The results Revealed a significant incr
... Show MoreThe aim of this work is to detect the best operating conditions that effect on the removal of Cu2+, Zn2+, and Ni2+ ions from aqueous solution using date pits in the batch adsorption experiments. The results have shown that the Al-zahdi Iraqi date pits demonstrated more efficient at certain values of operating conditions of adsorbent doses of 0.12 g/ml of aqueous solution, adsorption time 72 h, pH solution 5.5 ±0.2, shaking speed 300 rpm, and smallest adsorbent particle size needed for removal of metals. At the same time the particle size of date pits has a little effect on the adsorption at low initial concentration of heavy metals. The adsorption of metals increases with increas
... Show MoreThe current study aimed to adopt a method for inducing callus cells and regenerating the important common red bean using different types of growth regulators such as N6-benzylaminopurine (BAP), Naphthalene acetic acid (NAA), and Thidiazuron (TDZ). Different types of common bean pinto cultivar explants, such as internodes, cotyledons and roots, were inoculated on Murashige and Skoog medium (MS) provided with different combinations of plant growth regulators, including 1- BAP (5 mg/l) 2-BAP (4.5 mg/l) NAA (0.5 mg/l), 3- BAP (4.5 mg/l), and TDZ (0.1mg/l). Callus was initiated on MS culture medium supplied with 5 mg/l BAP for all explants (internodes, cotyledons, and roots) at 50, 20, and 10% r
... Show MoreIntroduction to Medical and Biological Statistics for Pharmacy Students and Medical Groups (Undergraduate & Postgraduate) - ISBNiraq.org
The high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning elect
... Show MoreRadiation therapy plays an important role in improving breast cancer cases, in order to obtain an appropriateestimate of radiation doses number given to the patient after tumor removal; some methods of nonparametric regression werecompared. The Kernel method was used by Nadaraya-Watson estimator to find the estimation regression function forsmoothing data based on the smoothing parameter h according to the Normal scale method (NSM), Least Squared CrossValidation method (LSCV) and Golden Rate Method (GRM). These methods were compared by simulation for samples ofthree sizes, the method (NSM) proved to be the best according to average of Mean Squares Error criterion and the method(LSCV) proved to be the best according to Average of Mean Absolu
... Show More