Corona Virus Disease-2019 (COVID-19) is a novel virus belongs to the corona virus's family. It spreads very quickly and causes many deaths around the world. The early diagnosis of the disease can help in providing the proper therapy and saving the humans' life. However, it founded that the diagnosis of chest radiography can give an indicator of coronavirus. Thus, a Corner-based Weber Local Descriptor (CWLD) for COVID-19 diagnostics based on chest X-Ray image analysis is presented in this article. The histogram of Weber differential excitation and gradient orientation of the local regions surrounding points of interest are proposed to represent the patterns of the chest X-Ray image. Support Vector Machine (SVM) and Deep Belief Network (DBN)
... Show More<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121
... Show MoreWith its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show MoreMedical images play a crucial role in the classification of various diseases and conditions. One of the imaging modalities is X-rays which provide valuable visual information that helps in the identification and characterization of various medical conditions. Chest radiograph (CXR) images have long been used to examine and monitor numerous lung disorders, such as tuberculosis, pneumonia, atelectasis, and hernia. COVID-19 detection can be accomplished using CXR images as well. COVID-19, a virus that causes infections in the lungs and the airways of the upper respiratory tract, was first discovered in 2019 in Wuhan Province, China, and has since been thought to cause substantial airway damage, badly impacting the lungs of affected persons.
... Show MoreComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreIn this research we assumed that the number of emissions by time (𝑡) of radiation particles is distributed poisson distribution with parameter (𝑡), where < 0 is the intensity of radiation. We conclude that the time of the first emission is distributed exponentially with parameter 𝜃, while the time of the k-th emission (𝑘 = 2,3,4, … . . ) is gamma distributed with parameters (𝑘, 𝜃), we used a real data to show that the Bayes estimator 𝜃 ∗ for 𝜃 is more efficient than 𝜃̂, the maximum likelihood estimator for 𝜃 by using the derived variances of both estimators as a statistical indicator for efficiency
The aim of this work is to develop an axi-symmetric two dimensional model based on a coupled simplified computational fluid dynamics (CFD) and Lagrangian method to predict the air flow patterns and drying of particles. Then using this predictive tool to design more efficient spray dryers. The approach to this is to model what particles experience in the drying chamber with respect to air temperature and humidity. These histories can be obtained by combining the particles trajectories with the air temperature/humidity pattern in the spray dryer. Results are presented and discussed in terms of the air velocity, temperature, and humidity profiles within the chambers and compared for drying of a 42.5% solids solution in a spray chamber
... Show MoreCalculating the Inverse Kinematic (IK) equations is a complex problem due to the nonlinearity of these equations. Choosing the end effector orientation affects the reach of the target location. The Forward Kinematics (FK) of Humanoid Robotic Legs (HRL) is determined by using DenavitHartenberg (DH) method. The HRL has two legs with five Degrees of Freedom (DoF) each. The paper proposes using a Particle Swarm Optimization (PSO) algorithm to optimize the best orientation angle of the end effector of HRL. The selected orientation angle is used to solve the IK equations to reach the target location with minimum error. The performance of the proposed method is measured by six scenarios with different simulated positions of the legs. The proposed
... Show MoreThis paper proposes and tests a computerized approach for constructing a 3D model of blood vessels from angiogram images. The approach is divided into two steps, image features extraction and solid model formation. In the first step, image morphological operations and post-processing techniques are used for extracting geometrical entities from the angiogram image. These entities are the middle curve and outer edges of the blood vessel, which are then passed to a computer-aided graphical system for the second phase of processing. The system has embedded programming capabilities and pre-programmed libraries for automating a sequence of events that are exploited to create a solid model of the blood vessel. The gradient of the middle c
... Show More