Support vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in comparison with existing SVM algorithms.
In this paper, the problem of developing turbulent flow in rectangular duct is investigated by obtaining numerical results of the velocity profiles in duct by using large eddy simulation model in two dimensions with different Reynolds numbers, filter equations and mesh sizes. Reynolds numbers range from (11,000) to (110,000) for velocities (1 m/sec) to (50 m/sec) with (56×56), (76×76) and (96×96) mesh sizes with different filter equations. The numerical results of the large eddy simulation model are compared with k-ε model and analytic velocity distribution and validated with experimental data of other researcher. The large eddy simulation model has a good agreement with experimental data for high Reynolds number with the first, seco
... Show MoreIn recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show MoreIn regression testing, Test case prioritization (TCP) is a technique to arrange all the available test cases. TCP techniques can improve fault detection performance which is measured by the average percentage of fault detection (APFD). History-based TCP is one of the TCP techniques that consider the history of past data to prioritize test cases. The issue of equal priority allocation to test cases is a common problem for most TCP techniques. However, this problem has not been explored in history-based TCP techniques. To solve this problem in regression testing, most of the researchers resort to random sorting of test cases. This study aims to investigate equal priority in history-based TCP techniques. The first objective is to implement
... Show MoreThis paper explores a fuzzy-logic based speed controller of an interior permanent magnet synchronous motor (IPMSM) drive based on vector control. PI controllers were mostly used in a speed control loop based field oriented control of an IPMSM. The fundamentals of fuzzy logic algorithms as related to drive control applications are illustrated. A complete comparison between two tuning algorithms of the classical PI controller and the fuzzy PI controller is explained. A simplified fuzzy logic controller (FLC) for the IPMSM drive has been found to maintain high performance standards with a much simpler and less computation implementation. The Matlab simulink results have been given for different mechanical operating conditions. The simulated
... Show MoreThis paper aims to study the quaternary classical continuous optimal control problem consisting of the quaternary nonlinear parabolic boundary value problem, the cost function, and the equality and inequality constraints on the state and the control. Under appropriate hypotheses, it is demonstrated that the quaternary classical continuous optimal control ruling by the quaternary nonlinear parabolic boundary value problem has a quaternary classical continuous optimal control vector that satisfies the equality constraint and inequality state and control constraint. Moreover, mathematical formulation of the quaternary adjoint equations related to the quaternary state equations is discovered, and then the weak form of the quaternary adjoint
... Show MoreSnS has been widely used in photoelectric devices due to its special band gap of 1.2-1.5 eV. Here, we reported on the fabrication of SnS nanosheets and the effect of synthesis condition together with heat treatment on its physical properties. The obtained band gap of the SnS nanosheets is in the rage of 1.37-1.41 eV. It was found that the photo-current density of a thin film comprised of SnS nanosheets could be enhanced significantly by annealing treatment. The maximum photo-current density of the stack structure of FTO/SnS/CdS/Pt was high as 389.5 mu A cm(-2), rendering its potential application in high efficiency solar hydrogen production.
Real life scheduling problems require the decision maker to consider a number of criteria before arriving at any decision. In this paper, we consider the multi-criteria scheduling problem of n jobs on single machine to minimize a function of five criteria denoted by total completion times (∑), total tardiness (∑), total earliness (∑), maximum tardiness () and maximum earliness (). The single machine total tardiness problem and total earliness problem are already NP-hard, so the considered problem is strongly NP-hard.
We apply two local search algorithms (LSAs) descent method (DM) and simulated annealing method (SM) for the 1// (∑∑∑
... Show MoreShadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensit
... Show MoreThis paper aims to explain the effect of the taxes policy including direct & indirect taxes on supporting the domestic Investment in Iraq. This could help the official planners for drawing the future policies that help provoking (istumlating) the domestic investment in Iraq the quantitative analysis approach was adopted using regression model. The results showed the significance of the effects of both direct & indirect taxes policies on domestic as a simple correlation coefficient ( r ) of ( 0.6 ) , ( 0.64 ) respectively.