Preferred Language
Articles
/
QBeJP48BVTCNdQwCDWaI
Multiresolution hierarchical support vector machine for classification of large datasets
...Show More Authors

Support vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in comparison with existing SVM algorithms.

Scopus Clarivate Crossref
View Publication
Publication Date
Thu Sep 01 2022
Journal Name
Iraqi Journal Of Computers, Communications, Control And Systems Engineering
A Framework for Predicting Airfare Prices Using Machine Learning
...Show More Authors

Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Cybersecurity And Information Management
Machine Learning-based Information Security Model for Botnet Detection
...Show More Authors

Botnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet

... Show More
View Publication
Scopus (7)
Crossref (4)
Scopus Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Computer, Communication, Control And System Engineering
A Framework for Predicting Airfare Prices Using Machine Learning
...Show More Authors

Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Deci

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Sun Nov 01 2009
Journal Name
Tencon 2009 - 2009 Ieee Region 10 Conference
Optimizing the MPLS support for real time IPv6-Flows using MPLS-PHS approach
...Show More Authors

View Publication
Scopus (4)
Scopus Crossref
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Hazardous Materials
Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste
...Show More Authors

View Publication
Scopus (56)
Crossref (47)
Scopus Clarivate Crossref
Publication Date
Sat May 16 2009
Journal Name
Journal Of Planner And Development
Support environmental programs using knowledge management
...Show More Authors

The research deals with Environmental Management and how to develop its programs with the use of Knowledge Management, the environmental programs that integrate with processes can add strategic value to business through improving rates of resource utilization , efficiencies , reduce waste, use risk management, cut costs, avoid fines and reduce insurance. All these activities and processes can improve it through knowledge management, the optimal usage for all organizations information , employ it in high value and share it among all organizations members who involves in modify its strategy . Choosing suitable environmental management information system, develop it and modify it with organization processes, can greatly serve the en

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Large Eddy Simulation in Duct Flow
...Show More Authors

In this paper, the problem of developing turbulent flow in rectangular duct is investigated by obtaining numerical results of the velocity profiles in duct by using large eddy simulation model in two dimensions with different Reynolds numbers, filter equations and mesh sizes. Reynolds numbers range from (11,000) to (110,000) for velocities (1 m/sec) to (50 m/sec) with (56×56), (76×76) and (96×96) mesh sizes with different filter equations. The numerical results of the large eddy simulation model are compared with k-ε model and analytic velocity distribution and validated with experimental data of other researcher. The large eddy simulation model has a good agreement with experimental data for high Reynolds number with the first, seco

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 30 2011
Journal Name
Al-kindy College Medical Journal
Large Epigastric Hernia: an Unusual Presentation
...Show More Authors

We presented here a 65years old lady with an unusual presentation of a large epigastric hernia of twenty years duration .The swelling was occupying all the right hypochondrial region .The diagnosis was made on r^E^a-operative identification of the defect in the linea alba which wassutured after removal of the hernial sac and its contents .The postoperative course was uneventful and the patient remained with no complications or recurrence for more than two years follow up.

View Publication Preview PDF
Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
An exploratory study of history-based test case prioritization techniques on different datasets
...Show More Authors

In regression testing, Test case prioritization (TCP) is a technique to arrange all the available test cases. TCP techniques can improve fault detection performance which is measured by the average percentage of fault detection (APFD). History-based TCP is one of the TCP techniques that consider the history of past data to prioritize test cases. The issue of equal priority allocation to test cases is a common problem for most TCP techniques. However, this problem has not been explored in history-based TCP techniques. To solve this problem in regression testing, most of the researchers resort to random sorting of test cases. This study aims to investigate equal priority in history-based TCP techniques. The first objective is to implement

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref